

# ANNUAL REPORT

---

## 2024



भा.कृ.अनु.प.-केन्द्रीय कपास अनुसंधान संरथान, नागपुर  
ICAR- CENTRAL INSTITUTE FOR COTTON RESEARCH, NAGPUR

An ISO 9001:2015 Certified Organisation





# वार्षिक प्रतिवेदन | ANNUAL REPORT 2024



**भा.कृ.अनु.प.-केन्द्रीय कपास अनुसंधान संस्थान, नागपुर**  
**ICAR- CENTRAL INSTITUTE FOR COTTON RESEARCH, NAGPUR**

An ISO 9001:2015 Certified Organisation

#### Published by

**Dr. V. N. Waghmare,**  
Director  
ICAR-Central Institute for Cotton Research, Nagpur

#### Editorial Committee

|                                          |            |
|------------------------------------------|------------|
| Dr. V. N. Waghmare, Director             | - Chairman |
| Dr. G. T. Behere, Head                   | - Member   |
| Dr. A. S Tayade, Head                    | - Member   |
| Dr. Vinita Gotmare, I/c Head             | - Member   |
| Dr. A. H. Prakash, Head, RS, Coimbatore  | - Member   |
| Dr. Rishi Kumar, I/c Head, RS, Sirsa     | - Member   |
| Dr. K. Velmourougane, Pr. Scientist, PME | - Member   |
| Dr. Annie Sheeba, Sr. Scientist          | - Member   |
| Dr. Pooja Verma, Sr. Scientist           | - Member   |
| Dr. Shivaji Thube, Sr. Scientist         | - Member   |
| Dr. Rahul Phuke, Sr. Scientist           | - Member   |
| Dr. Subhash Chandra, Scientist           | - Member   |



#### Compilation, Collation & Production Assistance

Smt. Vandana Satish  
Sh. Paresh Bhoyar

#### Designed by

Sh. Ritik Manapure

#### Correct Citation

ICAR-CICR, Annual Report 2024  
ICAR-Central Institute for Cotton Research, Nagpur, India  
pp.161

#### Note

- No part of this report shall be reproduced without permission of ICAR/CICR
- The reference to some trade names in this report is no way an endorsement of or discrimination against these products by the Institute.

Printed at  
Surya Offset, Ramdaspeth, Nagpur

# PREFACE

Cotton is one of the oldest and most widely used natural fibers, with a history dating back thousands of years. It is known for being biodegradable and relatively inexpensive, making it a popular choice globally. Cotton is also linked to India's history, including its role in the freedom movement and the iconic Charkha (spinning wheel). Cotton plays a significant role in India's agricultural and industrial economy. It is a major cash crop, providing livelihoods to more than 6 million farmers and provides employment to more than 50 million workers engaged in ginning, processing, and trade. It is a significant source of employment across various sectors and a source of raw materials not only for the textile industry but also for several other industries. Cottonseed oil is a major vegetable oil with a significant share of approximately 28% in India's edible oil market. Cotton is the third-largest contributor to domestic edible oil production, followed by rapeseed/mustard and soybean.



India is one of the world's largest cotton producers, second only to China, accounting for approximately 24% of global cotton production. However, the cotton productivity (441 kg lint/ha during 2023-24) is among the lowest among the major cotton-producing countries, such as Australia (2140 kg lint/ha), China (1950 kg lint/ha), Brazil (1939 kg lint/ha) and USA (1008 kg lint/ha). The continued decline in cotton production and productivity in India for more than a decade is a major concern for producers, industry, and policymakers.

A decline in cotton production and productivity has been observed due to biotic and abiotic stresses. High incidences of pink bollworm in all three zones due to the breakdown of resistance of BG II cotton, incidences of whitefly and CLCuD in the north zone, and increasing infestation of sucking pests, TSV, and thrips in the central and south cotton growing zones are the major contributors to the losses in cotton yields. Abiotic stresses such as aberration in climatic conditions: high rainfall, flooding, high temperature, and drought stress, affect cotton production and productivity in rainfed cotton-growing areas. Different stakeholders are making efforts to address the issues of quality seed availability, adaption of best cotton cultivation, and protection practices throughout the crop season and after harvest, marketing, and processing.

Since 2018-19, the Institute has vigorously implemented the IRM- Pink Bollworm Management strategies program sponsored by DA&FW under NFSM-CC across eight major cotton-growing states, covering 15 districts, 76 villages, and 900 acres. Overall, a 42.3% reduction in pink bollworm infestation was observed in IRM fields compared to non-IRM fields during 2023-24. Similarly, DA&FW funded a special cotton project on 'Targeting technologies to agro-ecological zones - large scale demonstrations of best practices to enhance cotton productivity' under NFSM, which was implemented during 2023-24 with an outlay of 41.87 crores by ICAR-CICR in Public-Private Partnership (PPP) mode in the identified clusters adopting a value chain approach. The project was implemented in 61 districts of 8 states covering an area of 9064 ha, involving 10,418 farmers, with the aim of scaling up three cotton technologies: HDPS (90x15cm), closure planting (90x30 cm), and promotion of ELS. The farmers realized an increase in cotton yields from 6.6 q/acre to 8.68 q/acre in HDPS demonstrations, an increase of 30.4% over the conventional plots. Similarly, closer planting resulted in an increase of 39.15% in seed cotton yield from 7.71 to 9.91 q/acre and an increase of 6.81% in ELS from 5.73 to 6.11 q/acre.

The Institute has made several noteworthy achievements during 2024, including the identification, release, and notification of 6 varieties viz. three naturally colour-linted varieties, *G. arboreum* variety CICR-A NC Cotton- 67 (CNA 1092), two *G. hirsutum* varieties CNH 18529, CICR-H NC Cotton 58 (CNH 17395), and three Bt varieties CICR 18-Bt, CICR 20-31 Bt, and PKV 081 Bt (for South Zone). Several non-Bt and Bt entries were sponsored in ICAR-AICRP on Cotton trials. A total of 12,386 germplasm accessions were conserved, one exotic accession from Nepal and three from Meghalaya were added, and 5187 accessions were evaluated for morphological traits and biotic stress. Quality seed production of 24 CICR-released varieties was taken up to meet DAC and direct indents from various stakeholders. This includes nucleus seed (3.2q), breeder seed (52.30q), and TFL



seed (4.80 q). Putative cry1D T0 transformants for pink bollworm resistance were generated via in-planta transformation. Genome editing in cotton was initiated by targeting the GhNB, GhGalT1, GhFAD2-1, and GhPEPC genes to improve plant architecture, fiber, and seed oil traits.

The ICAR-CICR developed a 'AI Smart Trap' that enables real-time monitoring of pink bollworm in cotton, which will be useful for pest monitoring throughout the country. It was deployed in three districts of Punjab at 18 locations, and the results reveal a reduction of pesticide use by 36-38% and increase in seed cotton yield by 16-18%. The ETL has been revised based on moth trap catches corresponding to the percentage of green boll damage, providing a valuable decision-making tool for pink bollworm management in cotton.

Three ICAR-CICR Technologies were certified and certificates were issued by ICAR to the developers, including (i) Nutrient Expert, a decision support system for hybrid cotton, (ii) Novel cotton-based IFS model for rainfed dry sub-humid ecosystem, and (iii) Gap-filling technology for better cotton crop establishment. Four patents were granted to the institute for bacterial-based volatile attractants for the management of sucking pests (aphids, thrips, whitefly) and an attractant for beneficial insects. During the year, 81 research papers were published, with a higher proportion of papers (82.7%) having NAAS rating >6.0.

In continuation to the previous years, outreach activities of the Institute further strengthened under the Tribal Subplan (TSP), Scheduled Caste Sub-Plan (SCSP), and IRM Pink Bollworm Management Project by the Institute, and 67 training programs were conducted with 7413 beneficiaries. In the capacity building program, 23 staff members were trained on various aspects. The final report of Quinquennial Review Team (QRT) of the Institute and ICAR- AICRP on Cotton for the period of 2018-2023 was also submitted by Dr. B. Venkateswarlu, Chairman (QRT) to the Hon'ble Director General, ICAR, New Delhi.

I am grateful to Dr. Himanshu Pathak, Hon'ble Secretary, DARE & Director General, ICAR, for his constant encouragement and guidance in supporting the Institute. I am grateful to Dr. T.R. Sharma, Hon'ble DDG (CS), Dr. D.K. Yadava, ADG (Seeds) and Dr. P.K. Dash, ADG (CC) for their constant encouragement, guidance, and support. Contribution of Dr. G. T. Behere, Head, Crop Protection & Nodal Officer (AICRP on Cotton), Dr. A.S. Tayde, Head, Crop Production, Dr. A. H. Prakash, Head, Regional Station, Coimbatore, Dr. Rishi Kumar, Head I/c, Regional Station, Sirsa, and Dr. G.I. Ramakrushna, I/c (KVK) in the execution of research programmes and outreach activities is gratefully acknowledged. Dr. M. V. Venugopalan, Principal Scientist, and Dr. K. P. Raghavendra, Sr. Scientist & I/c PME Cell have significantly contributed in shaping up the research activities of the Institute and need special acknowledgement. We would also like to thank the members of the Editorial Committee for their sincere and dedicated efforts in preparing this Annual Report-2024. Dr. K. Velmourougane, Mrs. Vandana Satish, Shri. Paresh Bhoyar and Mrs. Rama Iyer deserve special appreciation for their strenuous efforts and commitment in preparing this beautiful Annual Report.



(V. N. Waghmare)  
Director



# CONTENTS

| S.No. | Particulars                                                                  | Page No. |
|-------|------------------------------------------------------------------------------|----------|
| 1.    | EXECUTIVE SUMMARY                                                            | 1        |
|       | - Hindi                                                                      |          |
|       | - English                                                                    | 5        |
| 2.    | INTRODUCTION                                                                 | 9        |
| 3.    | RESEARCH ACHIEVEMENTS                                                        |          |
|       | CROP IMPROVEMENT DIVISION                                                    | 11       |
|       | CROP PROTECTION DIVISION                                                     | 30       |
|       | CROP PRODUCTION DIVISION                                                     | 48       |
| 4.    | TECHNOLOGIES DEVELOPED, EVALUATED AND TRANSFERRED                            | 73       |
| 5.    | EDUCATION, TRAINING AND CAPACITY BUILDING                                    | 75       |
| 6.    | AWARDS AND RECOGNITIONS                                                      | 85       |
| 7.    | LINKAGES AND COLLABORATIONS                                                  | 87       |
| 8.    | ICAR-AICRP ON COTTON                                                         | 89       |
| 9.    | KRISHIVIGYAN KENDRA                                                          | 97       |
| 10.   | GENERAL                                                                      |          |
|       | 10.1 : Publications                                                          | 110      |
|       | 10.2 : List of on-going projects                                             | 118      |
|       | 10.3 : Consultancy, Patents, Commercialization of Technology                 | 124      |
|       | 10.4 : Quinquennial Review Team Meeting                                      | 125      |
|       | 10.5 : Other Important Meetings/Workshop/Events                              | 127      |
|       | 10.6 : Participation of Scientists in Symposia/ Conference/Seminars/ Webinar | 132      |
|       | 10.7 : Personnel                                                             | 135      |
|       | 10.8 : Other information                                                     | 140      |
|       | 10.9 : Weather                                                               | 159      |
|       | 10.10 : Cotton Scenario                                                      | 160      |





## फसल सुधार

- जी. आर्बोरियम और जी. हिर्स्टम दोनों के लिए सरल पुनरावृत्त चयन के दो चक्र पूरे किए गए। एआईसीआरपी (आई ई टी) परीक्षणों में चार जी. आर्बोरियम जीनोटाइप और बेहतर उपज और फाइबर गुणवत्ता विशेषताओं वाले दो संकर प्रायोजित किए गए। उत्तरी क्षेत्र में कृषि विज्ञान परीक्षण के लिए एक देसी संकर सीआईएसए १९-४ को बढ़ावा दिया गया और जी. आर्बोरियम की सीएनए १०९२ किस्म की पहचान की गई और वर्षा आधारित स्थिति के तहत मध्य क्षेत्र में व्यावसायिक खेती के लिए जारी किया गया।
- १२,३८६ एक्सेशन का संरक्षण, नेपाल से एक विदेशी एक्सेशन और मेघालय से तीन एक्सेशन को शामिल करना; ५१८७ एक्सेशन का रूपात्मक लक्षणों के लिए मूल्यांकन और जैविक तनाव सहिष्णुता के लिए जांच; दो संवर्धन (कप के आकार की पत्ती लोब के साथ घने रोएं वाले रंजित पौधे) और सीएनएच २२२७५ (जैसिड्स प्रतिरोधी) को आनुवंशिक स्टॉक के रूप में पंजीकरण के लिए पहचाना गया और सार्वजनिक और निजी क्षेत्र के प्रजनकों को विविधता दिखाने के लिए जर्मप्लाज्म फील्ड डे का आयोजन किया गया।
- बत्तीस जंगली प्रजातियों को इन—सीटू संरक्षित किया गया, पांच (५) अंतर्वर्धित वंश (जी. आर्बोरियम X जी.लॉन्गिकैलिक्स) की पहचान की गई और उन्हें जेनेटिक स्टॉक के रूप में पंजीकरण के लिए चुना गया, और जीवीएस ८/९ से प्राप्त १० बीसी३एफ१ आबादी का सिरसा में मूल्यांकन किया गया। बेहतर फाइबर गुणवत्ता और जैसिड्स के प्रति सहनशील बीटी संकर के विकास के लिए आनुवंशिक रूप से विविध जनक रेखा का उपयोग किया गया। तीन एफ१ संकर, विशेष रूप से आईसी३प६६५५ X पी के वी ०८१ बीटी, आई सी २०४७१० X सीआईसीआर २१ बीटी और आई सी ३५७२५५ X ५०३ ने सर्वश्रेष्ठ प्रदर्शन करने वाली पैतृक वंश (सीआईसीआर २१ बीटी) से बेहतर प्रदर्शन किया।
- देसी (जी. आर्बोरियम) कपास में, संकर सीआईएसए १९-४ को २०२४-२५ के लिए एआईसीआरपी (उत्तरी क्षेत्र) के तहत कृषि विज्ञान परीक्षण में पदोन्नत किया गया था, जबकि दो अन्य संकर—सीआईएसए २२-३ और सीआईएसए २२-१—को एआईसीआरपी (उत्तरी क्षेत्र) २०२४-२५ के तहत उन्नत/समन्वित परीक्षण (बीआर २५ए सीएचटी) के लिए पदोन्नत किया गया था।
- सी.एल.सी.यू.डी. प्रतिरोधी प्रजनन के लिए आयोजित स्टेशन परीक्षणों में, जीनोटाइप सी.एच. एन.बी. १३, सी.एस.एच. एन.बी. १४, सी.एस.एच. एन.बी. २३, तथा सी.एस.एच. एन.बी. २८ की पहचान आशाजनक सी.एल.सी.यू.डी. प्रतिरोधी जीनोटाइप के रूप में की गई, जिनमें २% से कम पी.डी.आई. तथा सर्वश्रेष्ठ मानक किस्म एफ २२२८ की तुलना में काफी अधिक बीज कपास उपज प्रदर्शित की गई, जबकि जी.वी.एस. ९ (प्रतिरोधी) X एचएस ६ (संवेदनशील) के क्रॉस से प्राप्त एफ२ जनसंख्या के पृथक्करण विश्लेषण के दौरान सी.एल.सी.यू.डी. प्रतिरोध को नियंत्रित करने वाला एक एकल प्रभावी जीन सामने आया।

- जीईसी—स्वीकृत संकरों के मूल्यांकन के दौरान, दोनों परीक्षणों में सीएलसीयूडी के लिए पीडीआई ०% से १८% तक थी। सामान्य परीक्षण में ८४ प्रविष्टियों में से, लगभग ५४ बीजी ॥ संकरों ने बेहतर उपज (> २८ किंवटल/हेक्टेयर) दर्ज की। इसी तरह, हरियाणा राज्य परीक्षण में मूल्यांकन की गई १६ प्रविष्टियों में से, १० बीजी ॥ संकरों ने उच्च उपज प्रदर्शन (> ३१ किंवटल/हेक्टेयर) प्रदर्शित किया।
- अच्छी मजबूती वाले लंबी रेशा वाली किस्मों (१९) का मूल्यांकन जैविक स्थिति में दोहरा ए परीक्षण में किया गया, साथ ही उपज और फाइबर की गुणवत्ता के लिए एक जांच किस्म के रूप में सुरक्षा का मूल्यांकन किया गया और बहु—स्थान मूल्यांकन परीक्षणों में आगे के मूल्यांकन के लिए सर्वोत्तम कल्पर की पहचान की गई।
- पांच (एच X बी) संकरों ने लगातार तीन वर्षों तक स्थिर उपज और फाइबर गुणवत्ता दिखाई, जिसमें उपज, मानक किस्म से काफी अधिक थी। एक जी. बारबांडेस और एक जी. हिर्स्टम लाइन क्रमशः बेहतर उपज और तना भूंग (स्टेम वीविल) प्रतिरोधी के साथ विकसित की गई थी।
- ग्लाफोसेट प्रतिरोध/सहिष्णुता के लिए पहले से पहचानी गई सहनशील (२०) और अतिसंवेदनशील (२०) लाइनों सहित ७२४० जी. हिर्स्टम लाइनों की स्क्रीनिंग की गई। लक्षणों के आधार पर, ३९ सहनशील और २० सबसे अतिसंवेदनशील लाइनों की पहचान की गई।
- मैजिक जनसंख्या एफ६ से एफ ७ पीढ़ी तक उन्नत की गई और कोर सेट के विकास हेतु फेनोटाइपिक डेटा रिकॉर्ड किया गया है।
- तीन बीटी कपास किस्मों, सीआईसीआर एच बीटी कपास ४०, सीआईसीआर एच बीटी कपास ६६ (सीआईसीआर बीटी २०-३) और सीआईसीआर एच बीटी कपास ६५ (सीआईसीआर १८ बीटी) को अधिसूचित किया गया। कुल मिलाकर, विभिन्न एआईसीआरपी परीक्षणों के तहत ११ बीटी कपास जीनोटाइप का परीक्षण किया गया।
- सूखा—सहिष्णु लाइन की पहचान २९.५ मिमी फाइबर लंबाई, २७.३ ग्राम/टेक्स, ३४.८% जिनिंग आउट टर्न और ३.२ माइक्रोनेयर के साथ की गई और इसे जैविक कपास परीक्षण के लिए प्रायोजित किया गया।
- क्राई १डी जीन को व्यक्त करने वाले ट्रांसजेनिक तम्बाकू ने स्पोडोप्टेरा लिटुरा के विशुद्ध प्रभाव नहीं दिखाया, जो पहले के जीवाणु अभिव्यक्ति परिणामों की पुष्टि करता है। गुलाबी बॉलर्वर्म प्रतिरोध के लिए संभावित क्राई १डी टी० ट्रांसफॉर्मेट को इन—प्लाटा ट्रांसफॉर्मेशन के माध्यम से उत्पन्न किया गया था, और पौधों को टी० बीज की कटाई के लिए पॉलीहाउस में स्थानांतरित किया गया था।
- कपास में जीनोम संपादन की शुरुआत जीएचएनबी (GhNB), जीएचजीएएलटी१ (GhGalT1), जीएचएफएडी२-१ (GhFAD 2-1) और जीएचपीईपीसी (GhPEPC) जैसे जीन को लक्षित करके की गई ताकि पौधे की संरचना, फाइबर और बीज तेल के लक्षणों में सुधार हो सके। उम्मीदवार जीन अनुक्रमों को कोकर ३१२ से क्लोन और अनुक्रमित किया गया, और सीआरआईएसपीआर—सीएस९

(CRISPR-Cas9) संपादन के लिए एसजीआरएनए (sgRNA) डिजाइन और सत्यापन चल रहा है।

- पिंक बॉलर्वर्म (पी बी डब्लू) ट्रांसक्रिप्टोम को अनुक्रमित किया गया, जिसमें ३०,१२४ जीन की पहचान की गई और दो काइटिन बायोसिंथेसिस जीन (PgAGM and PUAP) को पीबीडब्लू प्रबंधन के लिए आरएनएआई (RNAi) लक्ष्य के रूप में मान्य किया गया। इसके अतिरिक्त, एक लागत प्रभावी डीएसआरएनए (dsRNA) संश्लेषण प्रोटोकॉल विकसित किया गया, और  $\alpha$ -न्यूब्लिन को सामान्यीकरण हेतु उपयुक्त माना गया।
- जीएचएलएस (GhALS) प्रोटीन और उनके उत्परिवर्ती रूपों के ६x-His-टैग वाले रूप को अभिव्यक्त करने और शुद्ध करने के लिए एक मानकीकृत प्रक्रिया/प्रोटोकॉल स्थापित किया गया। कपास के छोटे आरएनए(RNA) प्रोमोटर पीयू-२६-जीएच ६.७ और पीयू-२९-जीएच.३ को कलोन कर उनकी अनुक्रम की पुष्टि की गई तथा उन्हें पीजीडब्लूबी४३३ में स्थानांतरित किया गया ताकि अस्थायी जेयूएस अभिव्यक्ति परीक्षणों के माध्यम से उनके कार्यात्मक प्रमाणीकरण किया जा सके।
- अनुशांसित फसल उत्पादन तकनीक के साथ—साथ पत्तियों पर केन्नओे ३ (KNO<sub>3</sub>) और सूक्ष्म पोषक तत्वों के छिड़काव से कपास में रुई उत्पादन, रोमयुक्त बीज उत्पादन, शुद्ध बीज उत्पादन तथा शुद्ध बीज प्राप्ति के प्रतिशत में उल्लेखनीय वृद्धि दर्ज की गई।
- भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान में पादप किस्म अधिनियम, २००१ के अंतर्गत ६०० से अधिक संभावित कपास जीनोटाइप्स का डीयूएस (DUS) परीक्षण किया गया। वर्तमान में प्रचलित सभी कपास किस्मों का पूर्ण डेटाबेस भी लिखित रूप में प्रमाणित किया गया है और उसे डिजिटल रूप से संरक्षित भी किया जा रहा है।
- बीज वृद्धावस्था के परीक्षण में पाया गया कि आर्बोरियम किस्म में हिर्स्टम किस्म की तुलना में तीव्र कृत्रिम वृद्धावस्था के प्रति अधिक संवेदनशीलता दिखाई दी। ४८ घंटे की वृद्धावस्था के बाद आर्बोरियम में अंकुरण ६५% से भी नीचे गिर गया, जबकि हिर्स्टम में यह स्तर ७२ घंटे बाद देखा गया।
- केन्द्रीय कपास अनुसंधान संस्थान द्वारा विकसित २४ किस्मों के गुणवत्तापूर्ण बीजों का उत्पादन किया गया ताकि कृषि सहकारिता विभाग (डीएसी) की मांग तथा विभिन्न हितधारकों से प्राप्त प्रत्यक्ष मांग को पूरा किया जा सके। इसमें न्यूकिलियस बीज (३.२ किंवटल), ब्रीडर बीज (५२.३० किंवटल) और टीएफएल बीज (४.८० किंवटल) शामिल हैं।
- डीएसी की मांग पूरी करने के साथ—साथ इन किस्मों का प्रचार महाराष्ट्र, मध्य प्रदेश, तेलंगाना एवं गुजरात राज्यों में भी किया गया, तथा जैविक/प्राकृतिक खेती समूहों और कृषक किसान उत्पादक संगठनों (एफपीओ) सहित सभी की मांग पूरी की गई।

## फसल संरक्षण

- भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान ने एक 'एआई स्मार्ट ट्रैप' विकसित किया है, जो कपास में गुलाबी सुंडी (पिंक बॉलर्वर्म) की वास्तविक समय (रियल-टाइम) में निगरानी करने में सक्षम है, जो क्षेत्र-व्यापी कीट निगरानी के लिए उपयोगी सिद्ध होगा।
- कीटनाशक (इनसेक्टिसाइड + फफूंदनाशक) की खपत क्रमशः उत्तर भारत में ८३९, मध्य भारत में १४१७, दक्षिण भारत में २१२३ और पूरे

भारत में औसतन १४९४ ग्राम सक्रिय तत्व प्रति हेक्टेयर दर्ज की गई। इसमें कीटनाशकों का हिस्सा ८९% और फफूंदनाशकों का हिस्सा १% रहा।

- हेलीकोवर्पा आर्मिजेरा की खेतों में पाई जाने वाली आबादी के विरुद्ध आठ कीटनाशकों का परीक्षण किया गया, जिनमें से नवीन कीटनाशकों में इमामेकिटन बेंजोएट और परंपरागत कीटनाशकों में प्रोफेनोफार्स को सबसे प्रभावी पाया गया। कीटनाशक और फफूंदनाशक के मिश्रण से बचना चाहिए, विशेषकर कॉपर ऑक्सी क्लोराइड के साथ, क्योंकि इसमें परतों का अलग होना (Phase Separation) स्पष्ट रूप से दिखाई देता है।
- एआई—सक्षम स्मार्ट ट्रैप में स्पोडोएट्रो लिटुगा और हेलीकोवर्पा आर्मिजेरा पतंगों की पहचान और गिनती के लिए मशीन लर्निंग एल्गोरिदम विकसित किए गए, जिन्होंने क्रमशः ९२.३% और ८९.१% की पहचान सटीकता हासिल की। जैसिड, श्रिप्स, सफेद मक्खी, एफिड और गुलाबी सुंडी पतंगों की निगरानी और प्रबंधन के लिए एक बहुंगी ग्लू—फिन ट्रैप विकसित कर फोल्ड में परीक्षण किया गया, जो एक ही ट्रैप सिस्टम के माध्यम से सभी कीटों की निगरानी में सक्षम है।
- हरे बॉल (कच्चे कपास फल) को होने वाले नुकसान के प्रतिशत के आधार पर मॉथ ट्रैप में पकड़े गए कीटों की संख्या के अनुसार ईटीएल (आर्थिक क्षति स्तर) को संशोधित किया गया है, जो गुलाबी सुंडी प्रबंधन में निर्णय लेने के लिए एक मूल्यवान उपकरण प्रदान करता है।
- गैर—मौसमी जिनिंग मिल सर्वेक्षण (फरवरीदृढ़मई २०२४) के दौरान गुलाबी सुंडी के कारण बीज क्षति का औसत २४.६८% (११.१८% से ४१.९८% तक) दर्ज किया गया। लार्वा की प्राप्ति ०.०० से १८.३३ तक रही, जबकि प्यूपा केस (कोष अवस्था) की प्राप्ति ०.०० से २५.०० तक पाई गई।
- वर्ष २०२३—२४ के दौरान गुलाबी सुंडी (पिंक बॉलर्वर्म) के प्रबंधन हेतु रणनीतियाँ ८ राज्यों के १५ जिलों में फैले ७६ गांवों के ९०० एकड़ क्षेत्र में लागू की गईं। कुल मिलाकर, IRM (एकीकृत प्रतिरोध प्रबंधन) क्षेत्रों में गैर—IRM क्षेत्रों की तुलना में गुलाबी सुंडी के प्रकोप में ४२.३% की कमी दर्ज की गई।
- मेटारिजियम एनिसोप्लिए के टीएमबीएमए १ स्ट्रेन ने डस्की कॉटन बग के विरुद्ध प्रयोगशाला स्थितियों में ९९% तक मृत्यु दर दर्शाते हुए उच्च रोगजनकता दिखाई। फोल्ड परीक्षणों में इस जैव कंट्रोल एजेंट ने एफिड, गुलाबी सुंडी (पिंक बॉलर्वर्म) और जैसिड की आबादी को प्रभावी रूप से कम किया, जिससे यह स्पष्ट होता है कि यह कपास में सतत कीट प्रबंधन के लिए एक प्रभावी जैव कीटनाशक (बायोपेस्टीसाइड) बन सकता है।
- कपास में टी मस्किटो बग हेलोपेलिस थिवोरा द्वारा होने वाले नुकसान का आकर्तन करने के लिए संपूर्ण पोधे पर आधारित एक व्यापक स्कोरिंग प्रणाली विकसित की गई। थायमेथोक्साम १२.६०% + लैम्डा—साइड्हैलोथ्रिन ०.५०% झेडसी तथा डिनोटेप्यूरन २० एसजी को एच. थिवोरा के कंट्रोल में अत्यधिक प्रभावी पाया गया।
- कॉटन स्टेम वीविल (तने की सुंडी) की गसायनिक पारिस्थितिकी को समझने में आकर्षक यौगिकों, विशेष रूप से कंपाउंड सी, की पहचान से महत्वपूर्ण जानकारी प्राप्त हुई है। इन निष्कर्षों के आधार पर लक्षित कीट प्रबंधन रणनीतियाँ, जैसे कि आकर्षक—आधारित ट्रैप्स और रेपेल्लेट (कीट भगाने वाले पदार्थ) विकसित किए जा सकते हैं, जो वीविल की आबादी को प्रभावी ढंग से नियंत्रित करने में सहायक होंगे और पर्यावरण



पर न्यूनतम प्रभाव डालेंगे।

- हरियाणा राज्य प्रायोजित परीक्षण (२०२३-२४) के अंतर्गत ४० बीटी कपास संकर किस्मों में गैर-बीटी पौधों के अनुपात का मूल्यांकन किया गया, जो ० से १८.२१% के बीच पाया गया। उल्लेखनीय रूप से, २०२२ की तुलना में २०२३ में अधिक संख्या में संकर किस्में अनुशंसित रिफ्यूजिया सीमा के भीतर पाई गई।
- तापमान तानाव पर किए गए अध्ययन से पता चला कि अत्यधिक कम और अधिक तापमान दोनों ही सफेद मक्खी के जीवित रहने पर महत्वपूर्ण प्रभाव डालते हैं। होस्ट पौधे की उपस्थिति या अनुपस्थिति भी इसके जीवन दर को प्रभावित करती है। अल्पकालिक रूप से अत्यधिक तापमान के संपर्क में आने से सफेद मक्खी की जैविक क्रियाओं में परिवर्तन देखा गया।
- सूचना एवं संचार प्रौद्योगिकी (आय सी टी) उपकरणों का उपयोग करते हुए कपास कीट प्रबंधन की प्रभावी रणनीतियाँ लागू की गईं, और महाराष्ट्र में क्रॉपसैप (ब्लैच २०२३-२४) में एक प्रमुख भागीदार के रूप में योगदान दिया गया। २०२३-२४ के दौरान तीनों प्रकार की सुंडियाँ (बॉलवर्म्सी) और चूसक कीट पूर्णतः कंट्रोल में रहे।
- कपास की फसल पर फिप्रोनिल के चार बार छिड़काव के बाद, कपास जैसिड में प्रतिरोधकता का विकास २४ घंटे बाद ३४ गुना और ४८ घंटे बाद १२ गुना पाया गया, जबकि फ्लोनिकामिड के प्रयोग के बाद २४ और ४८ घंटे पर बहुत ही कम प्रतिरोधकता दर्ज की गई।
- कपास से एकत्रित कोरिनेस्पोरा कैसिकोला जीवाणु के आनुवंशिक विविधता और रोगजनकता के अध्ययन में कैसिकोलिन जीन, विशेष रूप से सीएस ५ (Cas 5), की अधिकता पाई गई, जो रोग की तीव्रता में इसकी प्रमुख भूमिका को दर्शाता है। फील्ड प्रयोगों से यह सिद्ध हुआ कि प्रतिरोधी किस्मों और लक्षित फकूंदनाशी रणनीतियों (विशेष रूप से जैव एजेंटों के समूह का उपयोग) से टारगेट लीफ स्पॉट रोग की घटना में प्रभावी कमी लाई जा सकती है।
- बॉल रॉट रोग समूह से जुड़े रोगजनकों की व्यापकता, रोग के कारण बनने वाले कारकों तथा फाइटोपैथोजन्स (रोगजनक जीवाणुओं) की विविधता का अध्ययन किया गया और रोग के समेकित प्रबंधन (हेतु रणनीतियाँ तैयार की गईं।
- रामुलरिया एरिओला का विभिन्न कपास प्रजातियों पर क्रोस-इनोकुलेशन (पारस्परिक संक्रमण) ग्लास हाउस और फील्ड में किया गया, लेकिन विभिन्न संकर किस्मों पर ग्रे मिल्डू रोग की तीव्रता फील्ड में कम पाई गई। ग्रे मिल्डू रोग के विरुद्ध सर्वश्रेष्ठ प्रबंधन पद्धति की पहचान हेतु दूसरे वर्ष का फील्ड परीक्षण किया गया। अधिकतम पीडीआई (रोग तीव्रता प्रतिशत) कंट्रोल में १३.३% दर्ज किया गया, इसके बाद ज२ (ट्राइकोडर्मा हार्जियानम का फोलियर स्प्रे @ ९० और बुआई के ११० दिनों बाद) में ११.७३% रहा। कंट्रोल की तुलना में रोग में अधिकतम कमी ज५ (कॉम्बी उत्पाद टू एज़ॉक्सीस्ट्रोबिन १८.२% + डाइफेनोकोनाजोल ११.४% का फोलियर स्प्रे @ ९० और ११० बुआई के ११० दिनों बाद) में दर्ज की गई।
- कपास की पत्तियों में पी. गॉसिपी (कॉटन रस्ट रोगजनक) के संक्रमण प्रक्रिया से संबंधित नवीन जानकारी प्राप्त की गई, जो कॉटन रस्ट पर कंट्रोल के लिए नई और अधिक प्रभावी प्रबंधन रणनीतियाँ विकसित करने में सहायक हो सकती है।
- ट्राइकोडर्मा वीरीडे के राइजोस्पेरिक फकूंद आइसोलेट्स

सीआईसीआर—आरएफ—टीएच—११ (CICR-Rf-Th-11), सीआईसीआर—आरएफ—१६ (CICR-Rf-16, सीआईसीआर—आरएफ—६० (CICR-Rf-60, सीआईसीआर—आरएफ—६३ (CICR-Rf-63), आरएफ—टीएनएयू टीवी१ (Rf-TNAUTv1) और आरएफ—सीआरएसवीपीटी टीवी१ (Rf-CRSVPT Tv 1) को बीज अंकुरण, पौधों की जीवंतता (विगर) तथा रुट रॉट रोग प्रबंधन के दृष्टिकोण से श्रेष्ठ पाया गया।

• नीम (*Azadirachta indica*) की पत्तियों से प्राप्त एक टेट्रानॉर्ट्राइटरपीनॉइड (लिमोलाइड) यौगिक निम्बोलाइड के मॉल्लिक्यूलर डॉकिंग अध्ययन से पता चला कि इसकी निमेटोइस (सूक्ष्म कृमियों) के प्रोटीन लक्ष्य पर सबसे अधिक बाइंडिंग एफिनिटी है। इसके बाद निमेटिसाइड्स फ्लूपायरम और फ्लुएनसल्फोन का स्थान रहा, जबकि कार्बोफ्यूरान की बाइंडिंग एफिनिटी सबसे कम पाई गई। निम्बोलाइड ने निमलिखित लक्षित प्रोटीनों कृ ओडीआर १ (ODR 1), कैथेप्सिन एल—प्रकार की सिस्टीन प्रोटीनेज, एचएसपी१०, न्यूरोपेप्टाइड जीपीसीआर, हीट शॉक आदि कृ पर संभावित अवरोधक के रूप में कार्य किया और निमेटोड्स में स्थायी पक्षाधात उत्पन्न किया।

• कपास में चूसक कीटों के पर्यावरण अनुकूल प्रबंधन के लिए बायोपेस्टीसाइड कंसोर्टिया (लेकेनिसिलियम लेकेनी और एसिनेटेबैक्टर लवॉफी) के तरल फार्मुलेशन का ५ मिली/लीटर की दर से १५-१५ दिनों के अंतराल पर दो बार छिड़काव करने की सिफारिश की गई है।

टैल्क आधारित बायोनिमेटीसाइड कंसोर्शिया (पोकोनिया क्लेमाइडोस्पोरिया और स्यूडोमोनास फ्लोरेसेस) का १ किलोग्राम प्रति एकड़ की दर से प्रयोग फील्ड स्थितियों में केंचुओं और लाभकारी सूत्रकृमियों (शिकार करने वाले एवं कीटजन्य रोग फैलाने वाले सूत्रकृमि) के लिए सुरक्षित पाया गया।

## फसल उत्पादन

- गोबर खाद (५ टन/हेक्टेयर) + अन्य वैकल्पिक म्होतों से पीकेव्हे संकुल (८.९६ विंच/हेक्टेयर) और उर्वरक की आवश्यक मात्रा (अकार्बिनिक उपचार) (११.१३ विंच/हेक्टेयर) के साथ समान बीज कपास उपज (९.६९ विंच/हेक्टेयर) का १ उत्पादन किया गया। रंगीन देसी कपास के किस्म सी.एन.ए १७५-२२ (१४.१९ विंच/हेक्टेयर) ने सबसे अधिक बीज कपास उपज का उत्पादन किया, जिसके बाद गैर-बीटी संकर पार्टेक २९ (१३.८८ विंच/हेक्टेयर) का स्थान रहा।
- सिंचित कपास के खेतों में औसत बीज कपास उपज (८.६ विंच. एकड़) प्राप्त हुई, जो वर्षा आधारित खेतों की तुलना में ६८% की वृद्धि दर्शाती है। विशेष रूप से जलगांव और नंदुरबार में गंभीर गुलाबी सूंडी संक्रमण ने कम पैदावार में योगदान दिया, जिससे उत्पादकता बढ़ाने के लिए एकीकृत कीट और जल प्रबंधन की आवश्यकता पर प्रकाश डाला गया।
- २०२४-२५ के कपास के खेती के दौरान, कपास से प्रति हेक्टेयर लगभग १.१७ टन कार्बन संचयित किया गया।
- कपास के साथ इन—सीटू कवर फसल के रूप में उगाई गई और ४५ कै. पर शामिल की गई सनहम्प ने उच्च कार्बन डाइऑक्साइड (eCO<sub>2</sub>) के तहत सबसे अधिक बायोमास संचयन किया। उच्च कार्बन डाइऑक्साइड (eCO<sub>2</sub>) के तहत एकीकृत पोषक तत्व प्रबंधन (INM) ने उच्चतम बीज कपास उपज, मृदा कार्बनिक कार्बन और मृदा उपलब्ध छ दर्ज किया, और इसे उच्च कार्बन डाइऑक्साइड (eCO<sub>2</sub>) के तहत एक स्थायी छ प्रबंधन रणनीति के रूप में समर्थित किया गया। आईएनएम प्रथाओं द्वारा



उच्च कार्बन डाइऑक्साइड (eCO<sub>2</sub>) के तहत नायट्रोजन (N) तनुकरण प्रभाव को कम किया गया।

- जलभराव का समय पर प्रबंधन, ड्रोन स्प्रे द्वारा प्राप्त किया जा सकता है, जिसमें जलभराव के ५वें दिन सैलिसिलिक एसिड / ०.५ mM एकल स्प्रे के साथ ३७.५ लीटर/हेक्टेयर की दर उपयोग किया जाता है इसके अलावा और जलभराव के ८वें दिन २% KNO<sub>3</sub> का उपयोग किया जाता है और मेड़ और फरो भूमि विन्यास के साथ (जल निकासी के बाद) २० किग्रा/हेक्टेयर नायट्रोजन और पोटेशियम प्रत्येक का उपयोग किया जाता है।
- जी. बारबाडेस जीनोटाइप (सुविन, सीआईसीआर बी कॉट ४५) में पौधों की सघनता (१० x १५ सेमी की दूरी; ७४,०७४ पौधे प्रति हेक्टेयर) और पौधे वृद्धि नियामक-आधारित कैनोपी प्रबंधन में वृद्धि के माध्यम से उपज में वृद्धि ने निकट भविष्य में एकस्ट्रा-लॉन स्टेपल (ईएलएस) कपास की मशीन से कटाई की संभावना का संकेत दिया है।
- उच्च बनत्व रोपण प्रणाली के तहत, कपास के छत्र प्रबंधन में रासायनिक छिड़काव ड्रोन का उपयोग कर के किया जा सकता है, जिसमें पारंपरिक उच्च मात्रा वाले स्प्रेयर (२०० लीटर स्प्रे द्रव्य/एकड़) के बजाय २० लीटर स्प्रे द्रव (पानी) / एकड़ में ए.आई. आधार पर मेपिक्वेट क्लोराइड की अनुशसित खुराक को मिलाया जाता है।
- क्षेत्रीय स्तर पर, सर्वोत्तम योजना के तहत, वर्षा आधारित कपास के अंतर्गत आने वाले फसल क्षेत्र को ५६.४१ हेक्टेयर से बढ़ाकर ६७.१ हेक्टेयर और सिंचित कपास के अंतर्गत क्षेत्र को १०७.७६ हेक्टेयर से बढ़ाकर १३५.३८ हेक्टेयर करने का सुझाव दिया गया है। अध्ययन से पता चलता है कि उत्पादक सामग्री की समय पर उपलब्धता, सिंचाई सुविधाओं और किसानों के बीच जागरूकता पैदा करने से कोयंब्दूर जिले में कपास के अंतर्गत आने वाले क्षेत्र बढ़ने की संभावना है।
- संरक्षण कृषि आधारित कपास—गेहूं प्रणाली प्रयोग के तहत, कपास के लिए शून्य जुताई + गेहूं अवशेष प्रतिधारण + मल्चर संचालन (कपास) और हैंपी सीडर के साथ गेहूं के लिए शून्य जुताई + कपास अवशेष प्रतिधारण + मल्चर संचालन (गेहूं) के साथ दोनों फसलों (किसानों की प्रथा) के लिए पारंपरिक जुताई प्रथाओं की तुलना में काफी अधिक बीज कपास उपज, गेहूं अनाज उपज और कुल उत्पादकता प्राप्त की गई।
- छत्र प्रबंधन में, पौधों की दूरी (प्रथम कारक) के बीच, ६७.५ x ४५ सेमी की दूरी ६७.५ x ६० सेमी की व्यापक दूरी की तुलना में काफी अधिक बीज कपास उपज हुई। द्वितीय कारक (मोनोपोडिया हाटाने, डिटॉपिंग और विकास नियामक अनुप्रयोग) के तहत, डिटॉपिंग + इथरल अनुप्रयोग के संयोजन ने कट्रोल की तुलना में सबसे अधिक उपज दी।
- फसल ज्यामिति प्रयोग में, अन्य फसल ज्यामिति की तुलना में २.२१ फीट पंक्ति दूरी x २.० फीट पौधे की दूरी (६७.५ x ६० सेमी) के साथ काफी अधिक बीज कपास की उपज प्राप्त की गई।
- विभिन्न कपास किस्मों (गैर-बीटी, बीटी-किस्म और बीटी-संकर) में अधिकतम उपज बीटी-संकर के साथ दर्ज की गई, उसके बाद बीटी-किस्में दर्ज की गई। ऑन-फार्म परीक्षणों की तुलना में स्टेशन

परीक्षणों में उच्च बीज कपास की उपज दर्ज की गई।

- नैनो-**Zn** फॉर्मूलेशन वर्षा आधारित काली कैल्केरियस मिट्टी में मिट्टी और कपास के पौधे के हिस्सों में **Zn** सांत्रता को सकारात्मक रूप से बढ़ाते हैं।
- बढ़ी हुई जाली पानी की गहराई को प्रोफाइल के निचले स्तरों में अधिक रिसने के लिए जिम्मेदार ठहराया जा सकता है।
- पादप हार्मोन जैसे आयएए, आयबीए, आइसोपेन्टाइल एडेनोसिन (साइटोकिनिन), एसए, जे.ए, एजेंलिक एसिड, सक्सनिक एसिड, टी-सिनामिक एसिड, और सिस-सिनामिक एसिड आदि का पता लगाने के लिए एक विधि को जीसी-एमएस पर स्कैन और सिम मोड का उपयोग करके सिलीलेशन (बी-एसटीएफए, एमएसटीएफए, और बीएसटीएफए + टीएमसीएस) और मिथाइलेशन (एमसीएफ) द्वारा अनुकूलित और मान्य किया गया था। परीक्षण किए गए व्युत्पन्नकरण विधियों में, बीएसटीएफए +५% टीएमसीएस ने फाइटोहोर्मोन का सबसे अच्छा पता लगाने की सुविधा प्रदान की।
- माइक्रोबियल कंसोर्सिया (MC4) के बीज और मिट्टी के अनुप्रयोग ने कपास की वृद्धि, पौधे की शारीरिकी, पौधे की रक्षा/एंटीऑक्साइडेंट एंजाइम गतिविधियों, बीज कपास की उपज, मिट्टी में पोषक तत्वों की उपलब्धता और मिट्टी के जैविक गुणों को महत्वपूर्ण रूप से बढ़ाया और कपास में अजैविक तनाव (जल—जमाव और सूखा) को कम किया।
- जीवाणु—आधारित वाष्पशील: टीसी, एचडीसी, एचटीसी, पीवाई, डीबीपी, ईसी और इसी ने कट्रोल की तुलना में क्रमशः अल्टरनेरिया (९८%), प्यूजेरियम (३३%), राइजोकटोनिया (७८%), मैक्रोफेमिना (३०६%), कोरीनेस्पोरा (२१९%), स्क्लेरोटियम (२१५%), और मायरोथे सियम (२२%) जैसे कपास रोगजनकों में **N**-एसिटाइलग्लुकोसामिन (NAG) सामग्री को महत्वपूर्ण रूप से कम कर दिया। कपास रोगजनकों के **N**-एसिटाइलग्लुकोसामिन (NAG) सांत्रता और फंगल बायोमास के बीच एक महत्वपूर्ण सकारात्मक सहसंबंध भी देखा गया।
- तीनों कृषि—जलवायु क्षेत्रों में सर्वोत्तम विस्तार प्रथाओं (बीईपी) का उपयोग करके कपास में सर्वोत्तम कृषि प्रथाओं (बीएफपी) के प्रसार ने बीज कपास की उपज को २२५ किलोग्राम से २१०० किलोग्राम प्रति हेक्टेयर तक स्थायी रूप से बढ़ाया है, और कपास उत्पादकों के ज्ञान संवर्धन में वांछनीय परिवर्तन लाया है।
- अधिकांश उत्तरदाताओं ने महसूस किया कि कपास की किस्म सुरभि ने ग्रीष्मकालीन सिंचित परिस्थितियों में कपास उत्पादकों की आजीविका पर महत्वपूर्ण प्रभाव डाला है। ई—कपास मोबाइल सलाह ने कपास उत्पादकों के ज्ञान स्तर पर महत्वपूर्ण प्रभाव डाला।

२०१८—२०२३ की अवधि के लिए संस्थान और आईसीएआर—एआईसीआरपी की कपास पर पंचवर्षीय समीक्षा टीम की अंतिम रिपोर्ट भी डॉ. बी. वेंकेश्वरलू, अध्यक्ष (QRT) द्वारा माननीय महानिदेशक, आईसीएआर, नई दिल्ली को सौंपी गई।

### Crop Improvement

- Two cycles of simple recurrent selection were completed for both *G. arboreum* and *G. hirsutum*. Four *G. arboreum* genotypes and two hybrids with superior yield and fibre quality traits were sponsored in the AICRP (IET) trials. A *desi* hybrid CISAA 19-4 was promoted to the Agronomy trial in the North Zone, and CNA 1092 variety of *G. arboreum* was identified and released for commercial cultivation in the Central zone under rainfed situation.
- Conservation of 12,386 accessions, addition of one exotic accession from Nepal and three accessions from Meghalaya; 5187 accessions evaluated for morphological traits and screening for Biotic stress tolerance; two cultures (Dense Hairy Pigmented Plant with Cup Shaped Leaf Lobed) & CNH 22275 (Jassids Resistant) identified for registration as Genetic Stocks and conducted Germplasm Field Day to showcase the variability to the breeders from the Public and Private Sector.
- Thirty-two wild species were conserved in-situ, five (5) introgressed lines (*G. arboreum* x *G. longicalyx*) were identified and selected for registration as Genetic Stocks, and 10 BC3F1 populations derived from GVS 8/9 were evaluated at Sirsa. Genetically diverse parents were utilized for the development of Bt hybrids with superior fibre quality and tolerant to jassids. Three F1 hybrids, particularly IC356655 x PKV081 Bt, IC204710 x CICR 21 Bt and IC357255 x 503 performed better than the best performing parental line (CICR 21 Bt).
- In *Desi* (*G. arboreum*) cotton, the hybrid CISAA 19-4 was promoted to the agronomy trial under AICRP (NZ) for 2024-25, while two other hybrids—CISAA 22-3 and CISAA 22-1—were promoted to the advanced/coordinated trial (Br 25a CHT) under AICRP (NZ) 2024-25.
- In station trials conducted for CLCuD resistance breeding, the genotypes CSH NB 13, CSH NB 14, CSH NB 23, and CSH NB 28 were identified as promising CLCuD resistant genotypes, exhibiting less than 2% PDI and significantly higher seed cotton yield compared to the best check, F 2228, whereas during segregation analysis of the F2 population derived from the cross GVS 9 (resistant) x HS 6 (susceptible) revealed a single dominant gene controlling CLCuD resistance.
- During the evaluation of the GEAC-approved hybrids, the PDI for CLCuD ranged from 0% to 18% in both trials. Among the 84 entries in the common trial, approximately 54 BG II hybrids recorded superior

yields (>28 q/ha). Similarly, of the 16 entries evaluated in Haryana State trial, 10 BG II hybrids exhibited high yield performance (>31 q/ha).

- Long staple cultures (19) with good strength were evaluated in a replicated trial in organic situation along with Suraksha as a check variety for yield and fibre quality and best cultures were identified for further evaluation in multi-location evaluation trials.
- Five (H x B) hybrids showed stable yield and fibre quality for three consecutive years, with yield significantly higher than the check. One *G. barbadense* and a *G. hirsutum* line were developed with better yield and stem weevil resistant respectively.
- Screening of 7240 *G. hirsutum* lines, including the already identified tolerant (20) and susceptible (20) lines for glyphosate resistance/tolerance, was carried out. Based on symptoms, 39 tolerant and 20 most susceptible lines were identified.
- The MAGIC population is advanced from F6 to F7 generation and phenotypic data recorded for development of Core set.
- Three Bt cotton varieties, CICR H Bt cotton 40, CICR H Bt cotton 66 (CICR Bt 20-3) and CICR H Bt cotton 65 (CICR 18 Bt), were notified. In total, 11 Bt cotton genotypes were tested under different AICRP trials.
- The drought-tolerant line was identified with 29.5 mm fibre length, 27.3 g/tex, 34.8 Ginning out turn (%), and 3.2 Micronaire and was sponsored for the Organic Cotton Trial.
- Transgenic tobacco expressing the *cry1D* gene showed no efficacy against *Spodoptera litura*, confirming earlier bacterial expression results. Putative *cry1D* T0 transformant for pink bollworm resistance were generated via in-planta transformation, and plants were transferred to the polyhouse for T<sub>1</sub> seed harvest.
- Genome editing in cotton was initiated by targeting genes like GhNB, GhGalT1, GhFAD2-1, and GhPEPC for improvements in plant architecture, fiber, and seed oil traits. Candidate gene sequences were cloned and sequenced from Coker 312, and sgRNA design and validation are underway for CRISPR-Cas9 editing.
- The pink bollworm (PBW) transcriptome was sequenced, identifying 30,124 genes and validating two chitin biosynthesis genes (PgAGM and PUAP) as RNAi targets for PBW management. Additionally, a cost-effective dsRNA synthesis protocol was developed, and  $\alpha$ -tubulin was identified as a suitable



normalizer for gene expression studies in PBW.

- A standardized protocol was established for expressing and purifying 6x-His-tagged GhALS proteins and their mutants. Cotton small RNA promoters pU6-26\_Gh6.7 and pU6-29\_Gh6.3 were cloned, sequence-verified, and mobilized into pGWB433 for functional validation via transient GUS expression assays.
- Recommended Packages of Practices + Foliar application of KNO<sub>3</sub> along with micronutrients significantly increased seed cotton yield, fuzzy seed yield, pure seed yield and pure seed recovery percentages in cotton.
- More than 600 candidate cotton genotypes have been tested for DUS under implementation of Protection of Plant Variety legislation, 2001 at the ICAR-CICR. The complete database of extant cotton varieties has also been documented and is being maintained digitally.
- In seed ageing responses, the arboreum genotype was found more sensitive to the accelerated ageing (AA) process than the hirsutum genotype. Germination dropped below 65% in the arboreum genotype after 48 hours of ageing, whereas in the hirsutum genotype, this threshold was observed after 72 hours.
- Quality seeds of 24 CICR-released varieties were produced to maintain and meet DAC indent as well as direct indent from various stakeholders. This includes nucleus seed (3.2q), breeder seed (52.30q), and TFL seed (4.80 q).
- In addition to meeting the DAC indent, the varieties were popularized among Maharashtra, MP, Telangana, and Gujarat States, and their demand, as well as those of organic/natural farm groups and farmer FPOs, were fully met.

### Crop Protection

- ICAR-CICR developed a 'AI Smart Trap' that enables real-time monitoring of pink bollworm in cotton, which will be useful for area-wide pest monitoring.
- Pesticide (insecticide + Fungicide) consumption was 839, 1417, 2123, and 1494 g a.i/ha in North India, Central India, South India, and overall India, respectively. The share of insecticide was recorded 89% while of fungicide 11%.
- Eight insecticides were screened against field populations of *Helicoverpa armigera*, among which emamectin benzoate in newer insecticides and profenofos in conventional insecticides were found to be most effective. Insecticide/fungicide combinations should be avoided, especially with copper oxychloride, as phase separation is very evident.
- Machine learning algorithms were developed to detect and count *Spodoptera litura* and *Helicoverpa*

*armigera* moths in an AI-enabled smart trap, achieving detection accuracy of 92.3% and 89.1%, respectively. A multi-colored glue-fin trap was developed and field-tested for monitoring and managing jassids, thrips, whiteflies, aphids, and pink bollworm moths in cotton using a single trap system.

- The ETL has been revised based on moth trap catches corresponding to the percentage of green boll damage, providing a valuable decision-making tool for pink bollworm management in cotton.
- During off-season surveys in ginning mills (Feb–May 2024), an average of 24.68% (11.18 to 41.98%) seed damage due to PBW was recorded. The numbers of PBW larvae recovered ranged from 0.00 to 18.33, whereas pupal case recovery ranged from 0.00 to 25.00.
- During 2023-24, pink bollworm management strategies were implemented across 900 acres in 76 villages, spanning 15 districts and 8 states. Overall, a 42.3% reduction in pink bollworm infestation was observed in IRM fields compared to non-IRM fields during 2023-24.
- The *Metarhizium anisopliae* TMBMA1 strain exhibited high virulence against the dusky cotton bug, with up to 99% mortality under laboratory conditions. Field trials demonstrated the effectiveness of this biocontrol agent in reducing aphid, pink bollworm, and jassid populations, highlighting its potential as a biopesticide for sustainable pest management in cotton.
- Developed a comprehensive whole plant-based scoring system to assess the damage caused by tea mosquito bug (*Helopeltis theivora*) in cotton. Thiamethoxam 12.60% + Lambda-cyhalothrin 9.50% ZC and Dinotefuran 20 SG were highly effective in controlling *H. theivora*.
- The identification of attractant compounds, particularly Compound C, provides valuable insights into the chemical ecology of cotton stem weevils. These findings can inform the development of targeted pest management strategies, such as attractant-based traps and repellents, to effectively control weevil populations while minimizing environmental impact.
- Evaluation of proportion of non-Bt plants across 40 Bt cotton hybrids under the Haryana State-sponsored trial (2023–24) ranged from 0 to 18.21%. Notably, compared with 2022, a greater number of hybrids in 2023 were within the recommended refugia limits.
- Temperature stress studies revealed that both low and high temperatures significantly affected whitefly survival, with host plant presence/absence also influencing survival percentage. Short-term exposure to extreme temperatures altered whitefly biology.
- Implemented effective cotton pest management



strategies using Information and Communication Technology (ICT) tools, contributing as a key stakeholder in CROPSAP 2023-24 in Maharashtra. All three types of bollworms and sucking pests were under control during 2023-24.

- After 4 repeated sprays of Fipronil on cotton crop, resistance development in cotton jassid was 34 and 12-fold at 24 and 48 hrs after exposure, whereas Flonicamid showed very low resistance at both 24 and 48 hrs after exposure.
- Genetic diversity and pathogenicity study of *Corynespora cassiicola* isolates from cotton revealed a high prevalence of the *cassiicolin* gene, particularly Cas5, and emphasized its role in disease severity. Field experiments demonstrated that resistant cultivars and targeted fungicidal strategies, particularly using Bioagents consortia, effectively reduced Target Leaf Spot incidence
- Studied the prevalence of boll rot pathogens associated with the boll rot disease complex, etiological factors, and phytopathogens diversity and devised strategies for integrated management of the disease.
- Cross-inoculation of *Ramularia areola* on different cotton species was taken up in Glass house and in the field, but the severity of grey mildew disease on different hybrids was less in the field. A second-year field trial was conducted to identify the best management approach against grey mildew disease. Maximum PDI was seen in Control (13.3%) followed by T1 (Foliar spray of *Trichoderma harzianum* @ 90 and 110 DAS i.e. 11.73%). The percent disease reduction over control was highest in T5 (Foliar spray of combi product (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 90 and 110 DAS).
- Generated novel information regarding the infection process of *P. gossypii* in cotton leaves, which might be useful in the development of new and more effective management strategies to control cotton rust.
- Rhizospheric fungal isolates of *Trichoderma viride* (CICR-Rf-Th-11, CICR-Rf-16, CICR-Rf-60, CICR-Rf-63, Rf-TNAU Tv1 and Rf-CRSVPT Tv1) found superior in terms of enhancing seed germination, plant vigour, and root-rot disease management.
- Molecular docking of Nimbolide, a tetranortriterpenoid (*limonoid*) compound isolated from the leaves of *Azadirachta indica*, revealed it to have the highest binding affinity for the protein targets of nematodes, followed by nematicides Fluopyrum and Fluensulfone. Carbofuran exhibited the lowest binding affinity. Nimbolide served as a potential inhibitor of the target proteins such as ODR1, Cathepsin L-like cysteine proteinase, HSP90, Neuropeptide GPCR, Heat Shock, and causes Irreversible paralysis of nematodes.

- Spraying liquid formulations of biopesticide consortia (*Lecanicillium lecanii* and *Acinetobacter lwoffii*) @ 5ml/L twice at 15 days intervals is recommended for the ecofriendly management of sucking pests in Cotton.
- Application of talc-based bionematicide consortia (*Pochonia chlamydosporia* and *Pseudomonas fluorescens*) at a rate of 1kg/ac was safer for earthworms and beneficial nematodes (predatory and entomopathogenic nematodes) under field conditions.

### Crop Production

- FYM (5t/ha) + other alternate sources produced on par seed cotton yield (9.69 q/ha) with PKV package (8.96 q/ha) and RDF (inorganic treatment) (11.93 q/ha). Coloured desi cotton variety CNA 175-22 (14.99 q/ha) produced the highest seed cotton yield, which was closely followed by the non-Bt hybrid Partech 29 (13.88 q/ha).
- Irrigated cotton fields yielded an average seed cotton yield (8.6 q/acre), representing a 68% increase compared with rainfed fields. Severe pink bollworm infestation, particularly in Jalgaon and Nandurbar, contributed to lower yields, highlighting the need for integrated pest and water management to boost productivity.
- During the cotton-growing season of 2024-25, around 1.17 tonnes of carbon per ha were sequestered from cotton.
- Sunnhemp grown as an in-situ cover crop with cotton and incorporated at 45 DAS produced the highest biomass accumulation under elevated carbon dioxide (eCO<sub>2</sub>). The Integrated Nutrient Management (INM) under eCO<sub>2</sub> recorded the highest seed cotton yield, soil organic carbon, and soil available N, and it was advocated as a sustainable N management strategy under eCO<sub>2</sub>. The N dilution effect under eCO<sub>2</sub> was reduced by INM practices
- Timely management of water logging can be achieved by drone spray by adopting spray fluid @ 37.5 L/ha with salicylic acid @ 0.5mM single spray on the 5th Day after water logging and KNO<sub>3</sub> @ 2% on the 8th day after water logging and application of nitrogen and potassium each @ 20 kg/ha (after drainage) with ridges and furrow land configuration
- Yield enhancement through increased plant density (90 x 15cm spacing; 74,074 plants per ha) and plant growth regulator-based canopy management in *G. barbadense* genotypes (Suvin, CICR B Cot 45) indicated the possibility of machine harvesting of ELS cotton in the near future.
- Chemical spraying drones can be used in cotton canopy management under a High- Density Planting System by mixing the recommended dose of Mepiquat chloride on an a.i basis in 20 litre spray fluid (water)/acre instead of a conventional high-volume

sprayer (200 litre spray fluid/acre).

- At the Regional level, the optimal plan suggests an increase in the area under rainfed cotton from 56.41 ha to 67.1 ha, and under irrigated cotton from 107.76 ha to 135.38 ha, respectively. The study reveals through timely availability of inputs, irrigation facilities, creating awareness among farmers, there is a possibility to enhance the area under cotton in Coimbatore district in general.
- Under the conservation agriculture-based cotton-wheat system experiment, significantly higher seed cotton yield, wheat grain yield, and total system productivity were achieved with: Zero tillage for cotton + wheat residue retention + mulcher operation (cotton) and Zero tillage for wheat with Happy Seeder + cotton residue retention + mulcher operation (wheat), as compared to conventional tillage practices for both crops (farmer's practice).
- In the canopy management, among the plant spacing (Factor I), 67.5 × 45 cm spacing resulted in significantly higher seed cotton yield than a wider spacing of 67.5 × 60 cm. Under Factor II (monopodia removal, detopping, and growth regulator application), the combination of Detopping + Etheral application gave the highest yield compared with the control.
- In the crop geometries experiment, a significantly higher seed cotton yield was obtained with 2.21 feet row distance x 2.0 feet plant distance (67.5 × 60 cm) than with the other crop geometries.
- Among the different cotton cultivars, (Non-Bt, Bt-variety and Bt-hybrids) maximum yield was recorded with Bt-hybrids followed by Bt-varieties. Higher seed cotton yield was recorded in the station trials than the on-farm trials.
- Nano-Zn formulations positively enhance the Zn concentration in soil and cotton plant parts in rainfed black calcareous soil.
- The increased lattice water depth can be attributed to more percolation into the lower levels of the profile.
- The method for detection of plant hormones such as

IAA, IBA, Isopentyl adenosine (cytokinin), SA, JA, Azelaic acid, Succinic acid, t-cinnamic acid, and Cis-cinnamic acid etc was optimized and validated by deploying silylation (BSTFA, MSTFA, and BSTFA+TMCS) and methylation (MCF) in plant samples using SCAN and SIM modes on GC-MS. Among the derivatization methods tested, BSTFA + 1% TMCS provided the best detection of phytohormones.

- The seed and soil application of microbial consortia (MC4) significantly enhanced cotton growth, plant physiology, plant defense/antioxidant enzyme activities, seed cotton yield, soil nutrient availability, and soil biological properties, and alleviated abiotic stress (water-logging, and drought) in cotton.
- Bacterial-based volatiles: TC, HDC, HTC, PY, DBP, EC, and EC significantly reduced N-acetylglucosamine (NAG) content in cotton pathogens such as *Alternaria* (98%), *Fusarium* (33%), *Rhizoctonia* (78%), *Macrophomina* (306%), *Corynespora* (219%), *Sclerotium* (215%), and *Myrothecium* (22%), respectively, compared with the control. A significant positive correlation was also observed between the NAG concentration and fungal biomass of the cotton pathogens.
- The diffusion of Best Farm Practices (BFPs) in cotton using Best Extension Practices (BEPs) in all three agro-climatic zones has sustainably increased seed cotton yield from 225 kg to 2100 kg per hectare, and has brought desirable changes in the knowledge augmentation of cotton growers.
- The majority of respondents perceived that the cotton variety Surabhi had a significant impact on the livelihood of cotton growers in summer irrigated conditions. e-Kapas mobile advisory had a significant impact on the knowledge level of cotton growers.

The final report of Quinquennial Review Team (QRT) of the Institute and ICAR- AICRP on Cotton for the period of 2018-2023 was also submitted by Dr. B. Venkateswarlu, Chairman (QRT) to the Hon'ble Director General, ICAR, New Delhi.



## 2.1: Brief History

The ICAR-Central Institute for Cotton Research (CICR) was established in Nagpur, in 1976. The two regional stations of IARI located at Sirsa (Haryana) and Coimbatore (Tamil Nadu) were transferred to ICAR-CICR to cater the needs of north and south India, respectively.

## 2.2: Mandate

- Basic, strategic and adaptive research on

production, protection, fibre quality and by-products of cotton

- Creation of new genetic variability for location-specific adoption in cotton-based cropping systems.
- Coordination and monitoring of applied research on national and regional issues to develop improved varieties and technologies
- Dissemination of technologies and capacity building

## Location of the of ICAR-CICR Institute

| Center                                              | Latitude (0N) | Longitude (0E) |
|-----------------------------------------------------|---------------|----------------|
| ICAR-CICR, Head Quarters, Nagpur, Maharashtra       | 21.037        | 79.056         |
| ICAR-CICR, Regional Station, Coimbatore, Tamil Nadu | 11.014        | 76.929         |
| ICAR-CICR, Regional Station, Sirsa, Haryana         | 29.543        | 75.038         |



### 2.3: Staff Position (as on 31<sup>st</sup> Dec. 2024)

| Category              | Sanctioned Cadre Strength |     |       |       | Post Filled Up |     |       |       |
|-----------------------|---------------------------|-----|-------|-------|----------------|-----|-------|-------|
|                       | NGP                       | CBE | Sirsa | Total | NGP            | CBE | Sirsa | Total |
| Director (RMP)        | 1                         | --  | --    | 1     | 1              | -   | -     | 1     |
| Scientific            | 54                        | 14  | 09    | 77    | 29             | 18  | 5     | 52    |
| Technical             | --                        | --  | --    | 72    | 36             | 10  | 7     | 53    |
| Administrative        | --                        | --  | --    | 46    | 20             | 3   | 3     | 26    |
| Skilled Support Staff | --                        | --  | --    | 44    | 24             | 3   | 11    | 38    |
| Training Organizer    | 1                         | --  | --    | 1     | -              | -   | -     | -     |
| Technical             | 11                        | --  | --    | 11    | 8              | -   | -     | 8     |
| Administrative        | 02                        | --  | --    | 02    | -              | -   | -     | -     |
| Skilled Support Staff | 02                        | --  | --    | 02    | 1              | -   | -     | 1     |

NGP – Nagpur; CBE – Coimbatore

### 2.4: Financial Statement

The budget grant and actual expenditure for the year 2024 are furnished below:

(Rs. in Lakhs)

|                                       | 2023-24  |             | 2024(Jan-Dec 2024) |             |
|---------------------------------------|----------|-------------|--------------------|-------------|
|                                       | Sanction | Expenditure | Sanction           | Expenditure |
| Plan Scheme                           | 1977.74  | 1975.70     | 2427.32            | 1698.93     |
| Deposit Scheme                        | 4229.78  | 3300.45     | 4176.65            | 3548.86     |
| Revolving Fund                        | 27.31    | 7.96        | 16.27              | 0.00        |
| Govt. Grants                          | 5161.61  | 5161.53     | 5551.00            | 4075.66     |
| Total (in lakhs)                      | 11396.44 | 10445.64    | 12171.24           | 9323.45     |
| Revenue Generation (Revenue Receipts) | 45.00    | 30.63       | 38.00              | 31.83       |



## 1. CROP IMPROVEMENT DIVISION

### 1.1 Project Name: Development of broad-based high yielding varieties of diploid and tetraploid cotton through recurrent selection

PI: V.N. Waghmare

**Importance of the study:** This project involves several parental lines aimed at development of broad-based *G. arboreum* and *G. hirsutum* varieties with improved fibre traits and high seed cotton yield through repeated cycles of selection and intercrossing. It also envisages development of high yielding spinnable as well as coarse type *G. arboreum* varieties and GMS-based hybrids for the North Zone.

#### Salient findings

##### Nagpur

**Evaluation of advanced cultures:** During 2023-24, 171 *G. arboreum* and 72 *G. hirsutum* selections were evaluated in 9 replicated trials (4 rows plots in 2 replications). Based on the data for economic performance and fibre quality traits, 107 advanced generation selections of *G. arboreum* were retained for further evaluation in replicated trial during 2024-25. The range for seed cotton yield among the *G. arboreum* selections ranged from 16.6 to 27.9 q/ha, boll weight: 2.2-3.28 g, GOT: 30.4-38.4%, fibre length: 25.2-29.9 mm, micronaire: 4.3-6.0, UI: 79.2-82.2 %, fibre strength: 24.3-34.1 g/tex and fibre elongation: 5.4-6.3%. Similarly, for *G. hirsutum*, 38 advanced selections were retained for further evaluation. The ranges for various economic and fibre quality trait values among the upland cotton selections ranged; 2.6-3.8 g for boll weight, 29.7 - 44.4% for GOT, 10.93 - 21.64 q/ha for seed cotton yield, 27.2-32.9 mm for fibre length, 2.4-3.9 for micronaire, 80.7-83.5 % UI, 26.5-36.5 for fibre strength and 5.3-6.2% for fibre elongation.

**Evaluation of single plant selections:** We evaluated 542 fertile single plant selections (347 of *G. arboreum* and 195 of *G. hirsutum*) as plant- to- row progenies. Superior single plants (604 Nos.) from the segregating progenies (117 of *G. arboreum* and 487 of *G. hirsutum*) were identified and harvested separately for further evaluation. Based on the performance and uniformity of advanced-generation plant progenies, 24 plant progenies of *G. arboreum* and 31 of *G. hirsutum* were identified for evaluation in replicated trial during 2024-25.

**Evaluation of sterile plants:** Sterile single plant progenies (673 nos) of *G. hirsutum* were planted as plant to row progenies. Trait-specific populations and sterile plant progenies were monitored for sterile and fertile

plants at flowering and tagged. In sterile plant progenies, observations of economic traits were recorded on 3 fertile random plants of each progeny. Based on superiority for specific traits, namely boll weight, GOT, seed cotton yield and fibre traits, about 10-15% superior progenies were identified to constitute trait-specific population and to further advance the recurrent selection cycle.

**Recurrent populations:** Composite populations in *G. hirsutum* were constituted for boll wt., GOT and SCY and fibre quality traits and were grown on large plots. Thus, two recurrent selection cycles were completed in *G. hirsutum* during 2023-24. In *G. arboreum*, trait-specific composite populations were monitored for sterile and fertile plants at flowering and tagged. Individual sterile plants from the 4 trait-specific composite populations (about 500 each) were harvested separately for evaluation and advancement of the recurrent selection cycle. From the 4 composite populations, 266 promising fertile plants were selected for evaluation as plant to row progenies.

**Evaluation of BLB selections:** We evaluated 79 advanced single-plant selections in two unreplicated row plots. Of these, 21 progenies were still segregating for resistance or susceptibility to BLB. About 24 uniform and BLB- resistant progenies with better fibre quality traits were identified for yield performance evaluation during 2024-25.

**Entries promoted under AICRP trials:** *G. arboreum* entry CNA 1085 was promoted to AVT II in the Central Zone, and entries i.e., CNA 1084 and CNA 1085 were promoted to Br. 24(a/b) AVT II in the South Zone.

**Agronomy Trial:** The genotypes CNA1092 and CNA 2034 of *G. arboreum* were evaluated in an agronomy trial in the Central and South Zones, respectively, under rainfed conditions. A variety identification proposal of CNA 1092 was submitted to the ICAR-AICRP on cotton. CNA 1092 was identified by the Varietal Identification Committee and subsequently released by CVRC vide Gazette Notification S.O. 4388(E) dated October 08, 2024.

**Table 1.1.1: Yield and fibre quality parameters CNA 1092**

| S. No.                       | Characters                  |              |
|------------------------------|-----------------------------|--------------|
| 1                            | Seed cotton yield potential | 2230 kg/ha   |
| 2                            | Boll weight (g)             | 2.60         |
| 3                            | Ginning Outturn (%)         | 33.1         |
| 4                            | Days to maturity (days)     | 150-160      |
| <b>Fibre characteristics</b> |                             |              |
| 5                            | Fibre length (at 2.5% SL)   | 24.5 mm      |
| 6                            | Micronaire                  | 5.2          |
| 7                            | Bundle strength (g/tex)     | 25.2         |
| 8                            | Zone of cultivation         | Central Zone |





Plant and boll characteristics

**Maintenance and multiplication of varieties:** CNA1028, CNA1032, CNA1031, CNA1054, CNA1003, CNA1091, CNH1111, and CNH 1128. In the previous year, 180-200 single plants were selected from each variety and evaluated for economic and fibre quality traits during 2023-24. About 5-10 % progenies matching the varietal traits were identified and bulked to constitute nucleus seeds for each variety.

#### Sirsa

**Evaluation of GMS-based *G. arboreum* Hybrids:** Five GMS-based hybrids were evaluated for seed cotton yield using check CICR 2 and zonal check KR 64. Two GMS based hybrids i.e. CISAA 23-3 (3072 kg/ha) and CISAA 23-2 (2952 kg/ha) recorded significantly higher seed cotton yields than hybrid CICR 2 (2601 kg/ha).

**Evaluation of High-yielding *G. arboreum* genotypes:** Sixteen varietal cultures were evaluated using the RBD design, including two check varieties, CICR 1(CISA 310) and CICR 3 (CISA 614). Two elite lines i.e. CISA 8-1 (2846 kg/ha) and CISA 6-11 (2773 kg/ha) recorded significantly higher seed cotton yield than high yielding best check CICR 3 (2206 kg/ha).

**Evaluation of spinnable *G. arboreum* genotypes:** Twelve spinnable cultures were evaluated in the RBD design including two check varieties, CISA 310 and CISA 614. Two elite lines i.e. CISA 10 (2241 kg/ha) and CISA 33-2 (2197 kg/ha) recorded significantly higher seed cotton yield than the quality check PA 255 (1522 kg/ha) and numerically higher seed cotton yield than the high-yielding best check CISA 614 (2170 kg/ha). In separate trial, 20 spinnable cultures were evaluated. Four cultures, namely NA-5 (1966 kg/ha), NA-2 (1755.8 kg/ha), NA-9 (1734 kg/ha), and NA-12 (1694.8 kg/ha) recorded significantly higher seed cotton yield than quality check PA 255 (1472 kg/ha).

**Maintenance, advancement, and selection:** Four GMS lines DS 5, CISA 2, GAK 413A, CISG 20, and 03 newly developed GMS lines, CISG-10, CISG-13, CISG-14 and 9 combiner lines of *G. arboreum* were also maintained. *G. arboreum* selections with better spinnability (23-26 mm fibre length) were advanced.

**Entries under AICRP (North Zone):** One GMS-based *G. arboreum* intra-arboreum hybrid CISAA 19-4 was promoted to the Agronomy Trial. Two GMS-based *G. arboreum* intra-arboreum hybrids i.e., CISAA 22-1 and CISAA 22-3 were promoted under Coordinated trial Br 25a. Two *G. arboreum* varieties i.e., CISA 8-1 and CISA 6-11

were sponsored in Br 22a/b National trial. Two intra-arboreum hybrids i.e., CISAA 23-2 and CISAA 23-3 were sponsored in the Br 25a/b (National trial).

#### 1.2 Project Name: Collection, conservation, evaluation, documentation and maintenance of germplasm of cultivated species of *Gossypium*.

**PIs:** Vinita Gotmare

**Co-PIs:** Sunil S. Mahajan, M. Saravanan, Neelakanth S. Hiremani, Manickam, A.H. Prakash, A. Manivannan, Debasish Paul, Anjali Kak

**Importance of the study:** The mandate of the institute is collection, conservation, evaluation, exchange, documentation of cotton germplasm in Medium-Term Storage (MTS) to ensure their availability and utilization to the public and private sector breeders and researchers of the country.

#### Salient findings

Conserved 12,386 accessions including cultivated and wild species of *Gossypium* perennials, landrace interspecific derivatives, and 52 registered Genetic stocks. One exotic germplasm was imported from Nepal. A total of 5187 germplasm accessions were evaluated in 2023-24 (780 core collection at both locations Nagpur and Sirsa) while *G. barbadense* (205) at ICAR-CICR RS Coimbatore for morphological and biotic stress. At Sirsa, IC359084, IC358473, IC359143, IC359758, IC359238, EC700049, IC357745, IC356611, and EC700514 were identified for higher seed cotton yield attributes.

Three new genotypes [*G. arboreum* race *Cernuum* (2) and *G. barbadense* (1)] were collected through survey and exploration in the West Garo Hills of Meghalaya. CMS conversion of the three identified Male Sterile lines was performed, and leaf curl viral disease resistant lines (BC3F1) were developed in Nagpur and evaluated at hot spot ICAR-CICR, RS, Sirsa. BC3F1 backcrosses of water-logging tolerance were developed and field evaluated. A germplasm field day was conducted for breeders of SAU's on 5th and 19th January, 2024 for SAU's & Pvt Seed Co. breeders, respectively,. At least 231 germplasm accessions, as indent, were shared with breeders of SAU's, 86 accessions were deposited in MTS and additional 283 accessions were processed for sharing with SAU's. Two *G. hirsutum* single plant progenies, namely CNH 2257 (dense hairy pigmented plant with cup shaped leaf lobed – Figure 1.2.1) and CNH 22275 (Jassids resistant, Figure 1.2.2), have been identified for registration as unique Genetic stocks.



Fig 1.2.1CNH 2257 (Dense Hairy Pigmented Plant with Cup Shaped Leaf Lobe)



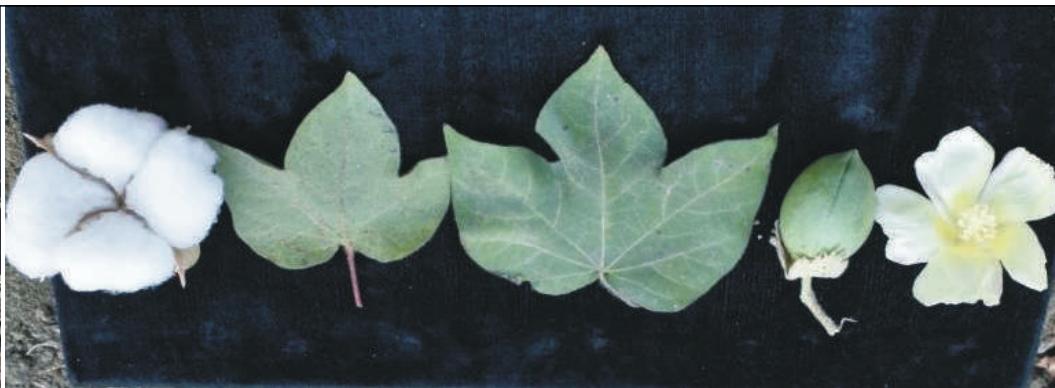



Fig 1.2.2 CNH 22275 (Jassid Resistant)

### 1.3 Project Name: Genetic diversity and utilization of wild germplasm for cotton improvement.

PI: Vinita Gotmare

Co-PI (s) – M Saravanan, Rachna Pande, Neelkanth Hiremani, Annie Sheeba, Sampath Kumar, K. Baghylakshmi & Subhash Chandra

**Importance of the study:** Wild species are the reservoirs of many useful genes governing different economic traits, including lint yield, fibre quality and resistance to biotic and abiotic stress tolerance. In view of the narrow genetic base of cultivated cotton, the available wild species including the newly introduced tetraploid, races of cultivated species, and synthetic polyploids of *Gossypium* are conserved and utilized in introgression breeding to broaden the genetic base and their utilization in improvement of cultivated species.

#### Salient findings

##### Nagpur

More than 425 introgressed derivatives were evaluated for fibre traits, biotic and abiotic stress tolerance. A total of 32 wild species, 15 races of cultivated species, and more than 45 synthetic polyploids were conserved in the wild species garden. 21 accessions of 9 exotic wild species were imported from USDA in 2021 were established. The seeds of two wild tetraploid species, *G. mustelinum* and *G. ekmanianum*, were harvested. Total 2340 crosses using wild species namely *G. australe*, *G. thurberi*, *G. raimondii*, *G. barbosanum*, *G. anomalum*, *G. capitis virides*, *G. triphyllum*, *G. klotzchianum*, *G. longicalyx*, *G. somalense*, *G. mexicanum*, *G. incanum*, *G. mustelinum*, *G. ekmanianum*, *G. aridum*, *Thespesia lumbas* were attempted with cultivated species while 314 crosses were harvested. F6 generation were advanced to F7 generation for field evaluation and a total of 180 single plants were selected on the basis of yield and yield contributing characters in wild derivatives viz. *G. arboreum* x *G. longicalyx*, *G. arboreum* race indicum x *G. davidsonii*, *G. arboreum* x *G. thurberi* and AK 8401 x *G. davidsonii* for fibre fineness and elongation. Five (5) lines (Table 1.3.1) have been identified & selected for registration as Genetic Stocks (*G. arboreum* x *G. longicalyx*) namely 23335 SP82-2, 23335 SP 125-2, 23335 (R)SP 94-5, 23335 (R)SP 103-1 & 23335 (R)SP

123-1. More than 50 naturally colour cotton genotypes have been evaluated for fibre and other economic traits and one green linted genotype has been selected for further evaluation.

**Table 1.3.1: Five introgressed lines selected for registration as Genetic Stocks (*G. arboreum* x *G. longicalyx*, F7)**

| Introgressed Line | UHML (mm) | Bundle strength (g/tex) | Mic (µg/in) | UI % | EI % |
|-------------------|-----------|-------------------------|-------------|------|------|
| 23335 SP82-2      | 27.2      | 28.1                    | 4.0         | 82   | 5.1  |
| 23335 SP 125-2    | 26.5      | 24.1                    | 3.8         | 81   | 5.5  |
| 23335 (R)SP 94-5  | 26.1      | 26.8                    | 4.3         | 83   | 4.9  |
| 23335 (R)SP 103-1 | 26.1      | 26.8                    | 4.0         | 82   | 4.7  |
| 23335 (R)SP 123-1 | 26.1      | 27.3                    | 4.6         | 82   | 5.3  |

#### Sirsa

During 2023-24, four BC3F1 populations with cultivated genotypes (CSH 3129/ CSH3075/ HS 6) as recurrent parents involving GVS 8and GVS 9 were evaluated for yield/plant, insect-pest reactions and CLCuD resistance, wherein high-yielding CLCuD resistant segregants (N= 07; PDI=0) were identified. Six BC3F1 populations with unadapted genotypes (GVS 8/9) as recurrent parent involving cultivated genotypes were evaluated for yield/plant, insect-pest reaction and CLCuD resistance, wherein high-yielding CLCuD resistant segregants (N = 22; PDI=0) were identified at ICAR-CICR, RS, Sirsa.

### 1.4 Project Name: Development of Bt hybrids in tetraploid cotton with high yield, superior fibre quality and tolerance to jassids.

PI: M. M. Saravanan

Co-PIs: Rahul M Phuke, Amudha J, Prabhulinga T

**Importance of the study:** The aim of this study is to develop elite Bt cotton hybrids along with superior fibre quality traits and tolerance to jassids. To break yield barriers, hybridization is the most important method, involving genetically diverse parents. The yield advantage is high in case of hybrids compare with varieties.

#### Salient findings

BG (II) advanced lines, Jassid tolerant lines (CNH2, CNH8 & CNH14) and ICAR-CICR released varieties such as Suraj Bt, PKV081 Bt, Rajat Bt, GJHV374 BT and



CICR21 Bt were used as male parents. Varieties such as Suraksha, Suchitra, Sunantha, PKV081 Non-Bt, Suraj Non-Bt and genetic stocks such as CNH204710 (above 40 % Ginning outturn) and big boll accessions of germplasm lines such as IC356655, IC359922, IC357255, IC359721, IC359084, IC356720, IC359266, and IC357449 (>5 grams) were utilized as female parents in the crossing programme. Line X Tester mating design was followed for the crossing programme, and all 98 F1s were evaluated using a randomized block design (RBD) with two replications. The F1 hybrids were compared with parental lines and check hybrids (3) for estimation of general combining ability (GCA), specific combining ability (SCA), and heterosis. Three crosses particularly IC356655 x PKV081 Bt, IC204710 x CICR 21 Bt and IC357255 x 503 performed better than the best performing parental line (CICR 21 Bt). Jassid screening of parents and F1 hybrids was carried out at 30, 60 and 90 DAS.

### 1.5 Project Name: Screening of germplasm and induced mutagenesis for the development of herbicide resistant cotton.

**PI:** M. Saravanan (PI),

**Importance of the study:** This study aimed to screen the cotton (*G. hirsutum*) germplasm and induced mutagenesis for developing herbicide-resistant cotton. Herbicide-resistant cotton enables more efficient weed management and maximizes cotton productivity.

#### Salient findings

Screening of 7240 already identified most tolerant (20) and most susceptible (20) *G. hirsutum* lines for glyphosate resistance/tolerance was carried out under field conditions during Kharif 2023-24. Glyphosate @100ml/15 litres of water was sprayed 48 days after sowing and the observation was recorded until 14 days after glyphosate spray in terms of symptoms such as chlorosis, wilting, growth response and stunting. Based on these observations, 39 most tolerant (Nos. 5, 22, 25, 27, 31, 36, 101, 103, 104, 118, 165, 237, 250, 256, 265, 267, 280, 285, 290, 294, 295, 297, 298, 300, 301, 302, 310, 455, 557, 3561, 3749, 3913, 4000, 4039, 4073, 4080, 4086, 4110 and 4199) and 20 most susceptible

lines (80, 87, 163, 170, 325, 490, 515, 565, 575, 594, 3507, 3527, 3537, 3578, 3693, 4176, 4296, 4326, 4403 and 4419) were identified for future research programmes.

The M2 population of gamma irradiated (200 & 300 Gy) Suraj Non-Bt cotton was established and screened against glyphosate during Kharif 2023-24. Glyphosate @100ml/15 litres of water was sprayed 48 days after sowing (Figure 1.5.1) and the observation were recorded until 14 days after spray as indicated above. Based on symptoms, 16 most tolerant lines were identified for further studies.

### 1.6 Project Name: Advancement of MAGIC population to develop core set for genetic mapping and identification of potential inbred lines

**PI:** Rahul M. Phuke

**Co-PI:** YG Prasad

**Importance of the study:** MAGIC populations due to their complex pedigree structure offer great potential for improving the breeding population and providing better chance to break the negative linkage between yield and fibre quality traits. MAGIC population has richer diversity and recombination rate without population structure which, enable genetic dissection of complex traits to support modern plant breeding programs.

#### Salient findings

A total of 2,886 MAGIC lines at the F6 stage were sown in a single row of eight dibbles using an augmented design, with parents included as checks. Selfing was performed on 4-5 flowers from a randomly selected plant in each line. Data were collected on plant phenology traits, including plant height, number of bolls per plant, number of monopodia, number of sympodia, boll weight, seed cotton yield (SCY) per plant, Jassid grade, maturity score, compactness score, and boll shape (Fig 1.6.1 a & b). The variations in the observed traits are summarized in Table 1.6.1. Out of the total lines, 336 exhibited segregation and were removed from the panel. A total of 106 lines were identified as promising, among which 81 showed an SCY per plant greater than 100 grams.

**Table 1.6.1. Observed variation for studied traits in 2731 MAGIC RILs**

| S. No. | Characteristics               | Mean  | Range    |
|--------|-------------------------------|-------|----------|
| 1      | Nos. of monopodia             | 1.9   | 0.5-8.0  |
| 2      | Nos. of sympodia              | 16.44 | 2.5-28   |
| 3      | Nos. of bolls/plant           | 24.40 | 4.5-65.8 |
| 4      | Plant height (cm)             | 91.58 | 37-170   |
| 5      | Boll weight (gm)              | 3.0   | 1.32-4.8 |
| 6      | Seed cotton yield /plant (gm) | 51.6  | 4.0-181  |





Figure 1.6. 1a: Trait variability for boll shape and leaf hairiness in MAGIC population

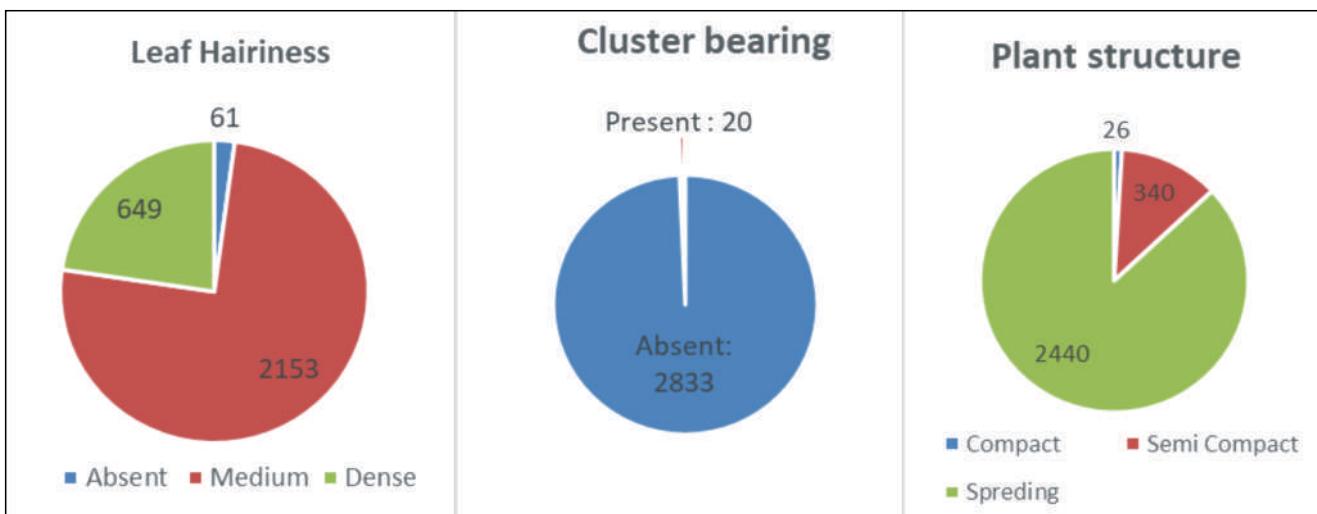



Figure 1.6. 1b: Trait variability for leaf hairiness, plant structure and cluster bearing nature in MAGIC population

### 1.7 Project Name: Rapid development of high-yielding Bt cotton varieties amenable for high-density planting system

PI: Rahul M. Phuke

**CO-PIs:** Raghavendra KP, Ramkrushna GI, Shah Vivek, Neelakanth S. Hiremani, S. Manickam, K. Baghyalakshmi, K. Ramesh, A. Sampath Kumar, Subhash Chandra and Debasish Paul

**Importance of the study:** Cotton productivity in India can be improved by deploying early maturing, compact Bt cotton varieties in rainfed areas with the option of high-density planting to increase yields, low resource demand, and better protection from bollworms due to early maturity. This project aims to develop Bt varieties using deregulated transgenic events.

#### Salient findings

##### Nagpur:

**Notification of varieties:** Three Bt cotton varieties i.e., CICR H Bt cotton 40, CICR H Bt cotton 66 (CICR Bt 20-3) & CICR H Bt cotton 65 (CICR 18 Bt), were notified in the 92nd meeting of Central Sub-committee on crop standards, notification and release for Agricultural crop held on 2nd August 2024 under the chairmanship of DDG (Crop sciences), ICAR, New Delhi.

**Nucleus seed production of Bt varieties:** Nucleus seed production was performed for two release Bt cotton varieties viz., CICR-PKV 081 Bt and CICR 23 Bt.

**Evaluation of promising cultures in AICRP:** A total of 11 entries sponsored by ICAR-CICR were tested in different AICRP trials as mentioned in Table 1.7.1

**Table: 1.7.1 List of Bt cotton genotypes sponsored in different AICRP trial for 2023-24**

| S. No. | Entries         | Trial name                                                            |
|--------|-----------------|-----------------------------------------------------------------------|
| 1      | CICR Bt 211-225 | Initial Evaluation Trial of Compact Hirsutum Varieties – Rainfed (CZ) |
| 2      | CICR Bt 211-246 |                                                                       |
| 3      | CICR Bt 2       | Advanced Evaluation Trial - I of Hirsutum Varieties- Rainfed (CZ)     |
| 4      | CICR Bt 4       |                                                                       |
| 5      | CICR Bt 22-31   |                                                                       |
| 6      | CICR Bt 22-32   |                                                                       |
| 7      | CICR Bt 22-33   |                                                                       |
| 8      | CICR Bt 21-31   | Advanced Evaluation Trial - II of Hirsutum Varieties- Rainfed (CZ)    |
| 9      | CICR Bt 21-32   |                                                                       |
| 10     | CICR PKV 081 Bt | Advanced Evaluation Trial of Hirsutum Varieties - II – Rainfed (SZ)   |
| 11     | CICR Bt 20-31   |                                                                       |

##### Evaluation of Bt genotypes in Station Trial at Nagpur:

A common station trial of 20 Bt entries along with four checks (Ajeet 155 BG II, RCH 608 BG II, PKV 081 Bt, and Suraj Bt) was conducted in RBD with two replications in 90 x 30 cm spacing of 4 rows. Phenotyping for yield related and fibre quality traits was carried out along with protein expression for Cry 1 Ac, pest infestation, and disease incidence.

The highest yield was recorded by Ajeet 155 (22.6 q/ha), followed by CICR Bt 24-13 BG II (20.4 q/ha) CICR Bt 24-11 (16.9 q/ha) (Table 1.7.2). Based on yield, resistance

to pest and diseases and fibre quality traits, test entries, viz., CICR Bt 24-13 BG II & CICR Bt 24-11 were

sponsored for the compact AICRP trial of central zones under rainfed condition and high-density planting.

**Table 1.7.2. Seed cotton yield and other data of Station trial selected entries**

| Genotype         | SCY (q/ha)  | GOT (%)     | Lint Index | Seed Index (gm) | UHML        | Mic.       | Str.        |
|------------------|-------------|-------------|------------|-----------------|-------------|------------|-------------|
| Ajeet 155 ©      | 22.6        | 37.1        | 5.3        | 9.1             | 26.3        | 3.5        | 33.1        |
| CICR Bt 24 -13   | 20.4        | 34.6        | 5.2        | 10.6            | 28.9        | 3.9        | 29.0        |
| CICR Bt 24-11    | 16.9        | 38.4        | 4.2        | 6.8             | 24.5        | 3.8        | 23.9        |
| CICR RS Bt 31 -1 | 16.8        | 35.3        | 4.4        | 8.0             | 25.2        | 3.0        | 27.3        |
| CICR Bt 24 -03   | 16.2        | 37.2        | 5.1        | 8.6             | 27.6        | 3.3        | 28.8        |
| PKV-081 Bt ©     | 16.1        | 34.2        | 4.1        | 7.9             | 25.7        | 2.8        | 29.1        |
| CICR Bt 24-04    | 15.7        | 38.0        | 4.7        | 7.7             | 27.9        | 2.9        | 28.5        |
| Suraj Bt ©       | 15.4        | 38.2        | 4.4        | 7.2             | 24.3        | 3.5        | 24.3        |
| RCH 608 ©        | 14.5        | 35.0        | 4.6        | 8.5             | 27.1        | 2.8        | 31.5        |
| <b>Avg. Mean</b> | <b>14.3</b> | <b>35.1</b> | <b>4.6</b> | <b>8.5</b>      | <b>27.0</b> | <b>3.0</b> | <b>28.2</b> |
| $\sigma^2 g$     | 21.35**     | 13.39**     | 0.35*      | 1.87*           | 4.94**      | 0.35**     | 10.10**     |
| CD @5%           | 1.87        | 2.73        | 0.61       | 1.38            | 1.53        | 0.46       | 2.98        |
| C.V              | 6.3         | 3.7         | 6.3        | 7.8             | 2.8         | 7.3        | 5.1         |

**Stability analysis Trial:** During 2nd consecutive year, phenotyping for stability trials was performed for 22 entries involving 20 release varieties of CICR, divided into Bt and non-Bt categories, with two designated checks: Ajeet 155 BGII and Ankur 3028 BG II. The pooled analysis of two-year data showed that the highest Seed cotton yield was recorded by Ajeet 155

BG, followed by PKV081-Bt, Ankur 3028 BGII, CICR Bt 14, and CICR Bt 9 (Table 1.7.3). The most stable genotypes were CICR Bt14, CICR Bt 21, PKV 081 Bt, and PKV Rajat. The genotypes released for the South zone were found unstable in the central zone (eg: Subhiksha, Surbhi, Sunantha, Anjali).

**Table 1.7.3. Location wise and pooled seed cotton yield of evaluated entries**

| Genotype        | 2022-23 TS  | 2022-23 LS | 2023-24 TS | Pooled     |
|-----------------|-------------|------------|------------|------------|
| Ajeet 155 BGII  | 17.6        | 16.1       | 17.5       | 17.1       |
| PKV081 Bt       | 16.4        | 13.3       | 13.7       | 14.4       |
| Ankur 3028 BGII | 11.6        | 13.7       | 14.1       | 13.1       |
| CICR Bt 14      | 15.4        | 8.6        | 10.7       | 11.5       |
| CICR Bt 9       | 14.8        | 9.3        | 10.4       | 11.5       |
| CICR Bt 25      | 15.6        | 9.2        | 8.5        | 10.9       |
| PKV Rajat       | 14.8        | 4.7        | 12.0       | 10.5       |
| CICR 23 Bt      | 10.1        | 9.3        | 11.9       | 10.4       |
| PKV 081         | 11.8        | 8.0        | 8.8        | 9.7        |
| CICR Bt 21      | 13.8        | 5.5        | 9.8        | 9.6        |
| GJHV 374 Bt     | 11.8        | 5.9        | 10.9       | 9.5        |
| CICR 16 Bt      | 12.9        | 5.9        | 9.3        | 9.3        |
| Suraj Bt        | 11.5        | 6.7        | 8.6        | 8.9        |
| NH615           | 10.2        | 6.8        | 7.2        | 8.2        |
| Rajat Bt        | 11.4        | 3.8        | 9.1        | 8.1        |
| Sunantha        | 8.8         | 6.1        | 6.7        | 7.1        |
| Suraj (QC)      | 10.5        | 6.1        | 4.9        | 7.0        |
| Anjali          | 8.4         | 6.1        | 6.2        | 6.8        |
| Surabhi         | 7.1         | 6.0        | 4.9        | 5.9        |
| LRA5166         | 7.5         | 5.0        | 4.8        | 5.7        |
| Suraksha        | 6.1         | 4.7        | 4.1        | 4.9        |
| Subiksha        | 7.0         | 2.9        | 4.3        | 4.7        |
| <b>Average</b>  | <b>11.6</b> | <b>7.4</b> | <b>9.0</b> | <b>9.3</b> |
| CD @ 5%         | 3.9         | 3.2        | 2.6        | 1.78       |
| CV              | 16.0        | 18.7       | 13.7       | 16.4       |



#### HDPS (Agronomy) Trial:

A spacing trial with three different configurations (60 × 15 cm, 60 × 30 cm, and 90 × 15 cm) was conducted for five compact Bt cotton varieties alongside the hybrid check, Ajeet 155 BG II. The analysis of variance revealed significant differences among genotypes, spacing, and their interactions. The pooled analysis showed that Ajeet 155 BG II had the highest seed cotton yield (26.71 q/ha), followed by Samrat Bt (19.73 q/ha), Tejas Bt (19.53 q/ha), and Yugank Bt (19.02 q/ha). Among the spacing treatments, the highest average seed cotton yield was observed at 60 × 15 cm (20.77 q/ha), followed by 60 × 30 cm (20.15 q/ha) and 90 × 15 cm (18.71 q/ha), indicating the suitability of these varieties for high-density planting.

#### Advanced Bt Breeding material:

The Bt breeding material (BG I & BG II) from the F2 to F7 generation comprising of total 185 families was advanced through the pedigree method. Among the higher generation, 22 bulks were produced based on yield and stability. High-yielding bulk with better fibre quality will be advanced to station trial. From early generations, 215 single plants were selected. Bacterial blight is a major disease during the season, and the maximum PDI of Bacterial blight was observed in entry ID 23-130 (22.0%).

#### Selected Bulk Material:

Fifteen F2 populations were grown in large plot sizes (~600 plants per F2). Single plant selection was performed based on phenotypic scores (compact, sucking resistance and vigorous flowering), and the first burst boll was selected for each selected plant. The family bulk for all 15 F2 families has been advanced as an F3 generation crop in the off-season (2024) in large

plot size in lieu of fast-track variety development.



Phenotypic expression of off-season crop

**Crossing program:** In total, 38 parental lines were maintained in the crossing block, and 35 single-way and 05 three-way crosses were attempted. Two female lines with GMS backgrounds underwent conversion through backcross breeding and BC5 generation is harvested.

**Sirsa:** Two entries i.e. CICRS Bt 58 (BG I) and CICRS Bt 50 (BG II), were sponsored in the ICAR Bt cotton Trials under AICRP (NZ) during 2024-25. In station trials (33 BG II entries + 2 checks), the BG II genotypes i.e., CICRS 50 BG II, CICRS 55 BG II, CICRS 81 BG II, and CICRS 88 BG II were found to be significantly high-yielding than best check PAU Bt 3. In other station trials (35 BG I entries + 2 checks), the BG I genotype i.e. CICRS Bt-58, CICRS Bt-63 and CICRS Bt-57 were found to be significantly high-yielding than best Check PAU Bt 3 (Table 1.7.4). BG I Entry CICRS Bt 31-1 ranked 3rd (Seed cotton yield: 16.8 q/ha) during Common Institute Trials 2023-24 at ICAR-CICR, Nagpur. Eight fresh crosses involving BG II cultures, compact cultures, and CLCuD-resistant genotypes were attempted.

**Table: 1.7.4: Details of prominent Bt and BG II genotypes evaluated at ICAR-CICR, RS, Sirsa during 2023-24**

| Station Trial (BG II)  |                           | Station Trial (BG I) |                           |
|------------------------|---------------------------|----------------------|---------------------------|
| Entry                  | Seed Cotton Yield (Kg/ha) | Entry                | Seed Cotton Yield (Kg/ha) |
| CICRS 55 BG II         | 2553                      | CICRS Bt 56          | 2259                      |
| CICRS 59 BG II         | 2324                      | CICRS Bt 58          | 2424                      |
| CICRS 39 BG II         | 2143                      | CICRS Bt 62          | 1975                      |
| CICRS 50 BG II         | 2572                      | CICRS Bt 63          | 2405                      |
| CICRS 61 BG II         | 1924                      | CICRS Bt 31          | 2259                      |
| CICRS 81 BG II         | 2440                      | CICRS Bt 51          | 1949                      |
| CICRS 88 BG II         | 2395                      | CICRS Bt 52          | 2088                      |
| CICR Bt 6 (LC)         | 1661                      | CICRS Bt 57          | 2592                      |
| PAU Bt 3 (ZC)          | 2158                      | CICR Bt 6(LC)        | 1626                      |
| RCH 773 (BG II Hybrid) | 2617                      | PAU Bt 3 (ZC)        | 2179                      |
| Range (Kg/ha)          | 955 - 2617                | Range                | 984 - 2591                |
| CD (5%)                | 235.15                    | CD (5%)              | 276.24                    |
| CV                     | 8.90                      | CV                   | 9.94                      |

A total of 11.07 kg seeds of seven elite Bt- cotton lines viz. CICR Bt 46, CICR Bt 58, CICR Bt 48, CICR Bt 57, CICR Bt 50, CICR Bt 88 and CICR Bt 92, were produced at ICAR-CICR, Regional Station, Sirsa during 2023-24 for

sponsoring under AICRP. Qualitative ELISA testing of each plant was performed to determine the Bt-seed purity.

## 1.8: Project Name : AICRP on Seeds (Crops)

PI: V. Santhy

Co-PIs: S. Manickam, S. Mahajan and Debasish Paul

**Importance of the study:** Seed is the basic fundamental medium for technology dissemination, and the supply of quality seeds is essential to popularize newly developed cotton varieties. This project aims to produce sufficient quantities of quality seed in the form of breeder seed and truthfully labelled seeds of released and notified crop varieties of cotton developed by CICR. These include Bt and non-Bt cotton varieties, thereby catering to the needs of all types of cotton farmers, FPOs and various schemes including FLDs, NFSM, organic cotton producers and researchers. Additionally, to utilize unutilized land as improve its soil properties, the project also includes the production of other crop varieties such as red-gram, chickpea and linseed during the kharif and rabi seasons.

### Salient findings

Quality seed (nucleus, breeder and TFL) production of CICR released and notified cotton varieties suitable for each zone was taken up as per DAC indent as well as direct indents received, at Nagpur (Figure 1.8.1), Sirsa and Coimbatore. A total of 52.30q breeder seed was produced for 24 released and notified cotton varieties at all three locations. This includes 7.1 q seed of 7 Bt varieties, 26.82 q seed of 7 non Bt hirsutum varieties, 4.50q seed of 3 ELS cotton varieties and 14.0q of 6 desi cotton varieties (Table 1.8.1). Nucleus seed of 3.2q was produced at all three stations for the released and notified CICR cotton varieties belonging to three cultivated species *G. hirsutum*, *G. arboreum* and *G. barbadense*.

**Table 1.8.1: Breeder seed production of released and notified varieties**

| Name of the Variety                                                               | Breeder seed produced (q) |
|-----------------------------------------------------------------------------------|---------------------------|
| Non Bt <i>G. hirsutum</i> varieties                                               |                           |
| Suraksha                                                                          | 13.77                     |
| Nano                                                                              | 2.30                      |
| Suraj                                                                             | 6.25                      |
| Sunanda                                                                           | 1.10                      |
| CCH-2623                                                                          | 1.10                      |
| CSH 3129                                                                          | 0.90                      |
| CSH 3075                                                                          | 1.40                      |
| Bt varieties                                                                      |                           |
| Yogank Bt                                                                         | 1.25                      |
| PKV-081 Bt                                                                        | 3.30                      |
| CICR Bt 6                                                                         | 1.50                      |
| CICR 16 Bt, 21Bt, 23Bt and 25 Bt                                                  | 1.02                      |
| <i>G. barbadense</i> varieties (CICR B Cot.37, B Cot.45 and B Cot. 55)            | 4.50                      |
| Desi Cotton Varieties (CICR-1, CICR-3, CNA 1028, CNA-1032, CNA-1003 and CNA 1054) | 14.00                     |

In addition, 4.80q TFL seeds of Suraksha non-Bt cotton varieties were produced under farmer participatory mode at Nagpur. Other Crops (Kharif and rabi crops) mainly for crop rotation as well as utilization of cotton non-arable land produced at Nagpur include 15.5q red gram, variety Ankur 555; 30.96q Gram variety Jackie 9218; 10q wheat variety Purna 444; 2.06q linseed variety NL-260 and 0.45q mustard variety TAM-108.

Experiment on nano- seed priming at 200 ppm using chitosan nanoparticles synthesized using ionic gelation method with TTP as cross-linker in cotton variety, Suraksha showed higher germination and root length than hydro primed seeds and untreated seeds



Visit by Central Zone Breeder Seed Production Monitoring Team to the fields of ICAR-CICR, Nagpur



Breeder seed production of CICR non Bt cotton, Suraksha, an ELS variety

## 1.9. Project Name: Development of Quality Seed Production Protocol in Cotton

PI: Sunil S. Mahajan

Co-PIs: Santhy Venoor

**Importance of the study:** Seed production in cotton is the lengthy process. It include removal of lint from the seed followed by delinting with acid, cleaning, grading, seed treatment and packaging. It was found that the seed- to- lint ratios varied among different species and varieties of cotton. Very low recovery of pure seed and wastage of undesired materials are the major issues that need to be resolved in cotton seed production. Package of practices developed for crop production are available, but proper seed production protocols for cotton seed production in India are not available. To find



appropriate seed production methods, present work was initiated to explore different available treatments with interventions under the resource-constrained conditions to enhance quality seed recovery per unit area in cotton.

#### **Salient findings**

The experiment was conducted using the existing seed production plots in three replications (RBD). Bt variety PKV 081 (90 x 30 cm, spacing) and non-Bt variety, Suraj (90 x 30 cm and 120 x 30 cm, spacing) were used for the experiment. All the recommended package of practices (RPP) for seed cotton yield were followed and treated as control (T1). The other five additional interventions to enhance the quality seed production in cotton employed were RPP + Additional KNO<sub>3</sub> @2% at 80-85 days (T2), RPP + Detopping at 80-85 days (T3), RPP + Micronutrients (MN) available in the market @60, 80 and 100 days (T4), RPP + T2 + T4 (T5) and RPP + T2 + T3 + T4 (T6). The results obtained from the experiment are as under:

- Foliar application of RPP + MN + KNO<sub>3</sub> influenced the plant height, number of sympodia and significantly increased the Seed Cotton Yield, Fuzzy Seed Yield, Pure Seed Yield and Pure Seed Recovery percentages in Suraj at wider spacing (120 x 30 cm).
- Foliar application of RPP + KNO<sub>3</sub> and RPP + MN + KNO<sub>3</sub> significantly increased Seed Cotton and Fuzzy Seed Yield in Suraj at closer spacing (90 x 30 cm)
- Pure seed yield and pure seed recovery percentages were significantly highest with RPP + KNO<sub>3</sub> and RPP + MN + KNO<sub>3</sub> + detopping in PKV 081 Bt at closer spacing.
- Seed germination, seedling length, seedling vigour index, 100 seed weight, boll numbers, boll weight and monopodia were non-significant.

#### **1.10 Project Name: Blindfold testing of RIB practice in Bt cotton**

**PI:** G. Balsubramani

**Importance of the study:** The poor compliance of structured refugia in India is considered one of the major reasons for the development of resistance against Bt proteins in the pink bollworm. The Government of India introduced an alternate strategy of blending non-Bt seeds with Bt seeds so that there is an automatic compliance of refuge planting which can help to extend longevity of Bt technology. Accordingly, a gazette notification [S.O. 4215(E) dated 27 December 2016] on 'refuge-in-bag' (RIB) in Bt cotton was brought out which mandates blending of 5-10% non-Bt seeds with 90-95% Bt seeds in each Bt seed packet being sold in the market from June 2020. With Bt and non-Bt seeds becoming indistinguishable, ascertaining compliance of RIB was a national concern.

#### **Salient findings**

The minimum seed sample size for RIB compliance testing was determined earlier through a multi-phase

study that proposed a minimum sample size of 180 seeds with each seed tested individually for transgenes. The said protocol was validated through testing of commercial seed packets of Bt cotton purchased from open market for RIB compliance as well as validation on the field.

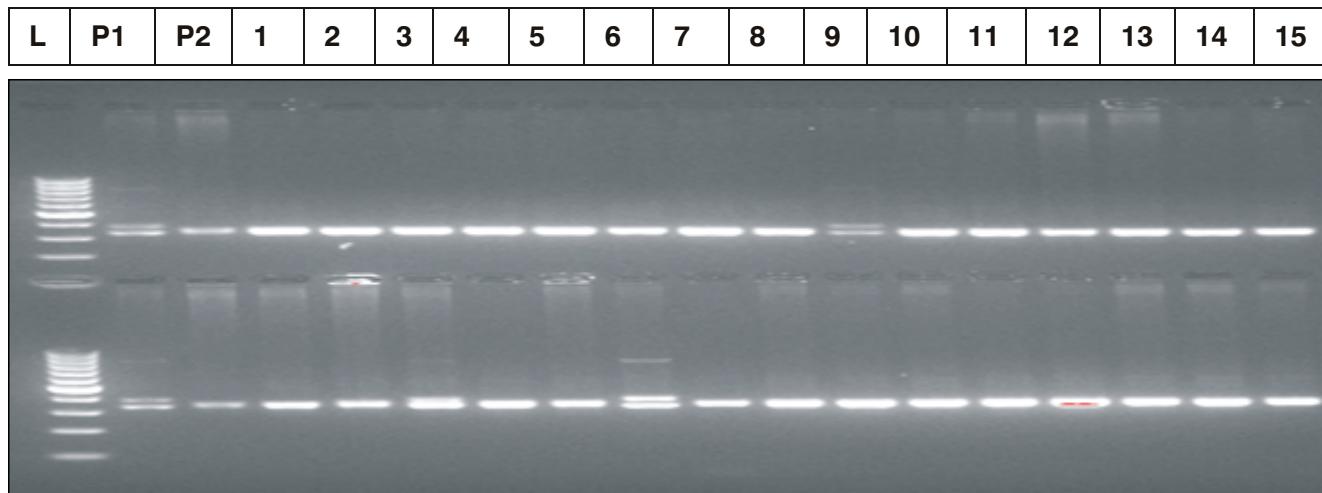
Following the protocol, 44 commercial seed packets of Bt cotton purchased from open markets were tested and sampled completely randomly for the presence of refugia using the standardized sample size. Out of the 44 seed packets of various companies tested, 28 only were found to adhere to the RIB requirement with 5-10% refugia for both Cry1Ac and Cry2Ab. Those company seed packets which did not adhere to the requirement showed only 2-3% refugia within them. This was reconfirmed by repeating the test following the same protocol.

#### **1.11 Project Name: Validation of molecular markers and genes linked to drought tolerance in cotton.**

**PI:** J. Amudha

**Co-PI (s)** - Jayant Meshram; M. Saravanan

**Importance of the study:** This study aimed to investigate stress situation-focused research needed specifically for developing genotypes with tolerance to abiotic stresses. Identification/Validation of molecular markers and genes linked to drought tolerance traits is being undertaken in this project.


#### **Salient findings**

Interspecific cross between *G. hirsutum* X *G. barbadense* (CNH 28 I X Suvin) derived recombinant inbred lines (RIL) (129 F11 lines) were used for validation of drought-linked markers. QTL markers mapped and linked with osmotic potential, carbon isotope ratio, chlorophyll a, chlorophyll b, relative water content, canopy temperature, root length, and root volume were selected from the cotton database (<http://www.cottonqtl.org>). The selected 157 QTLs were screened using genomic DNA samples from both parents produced 16 polymorphic markers, namely NAU 2557, CIR 143b, MUSB 0818c, JESPR 0205, BNL 1053, NAU 2474, BNL 3594b, BNL 2884, BNL 3259, BNL 3259, BNL 1153b, BNL 3173b, JESPR 230c, BNL 3347, MUSS 096a, CIR 061b, and BNL 1705 (Table 1.11.1). 5 QTLs each linked to the carbon isotope ratio and osmotic pressure, 4 QTLs linked to root volume, and 1 QTL each linked to relative water content and root length. The drought-tolerant parent and the drought tolerant recombinant inbred line population produced the same banding pattern with the polymorphic SSR markers showing the introgression of drought trait in the progenies (Fig 1.11.1). The RIL population was phenotyped for physiological parameters like canopy temperature, chlorophyll content (SPAD value), relative water content, and proline content. Phenotyping data with high relative water content, proline content, chlorophyll content, and lower canopy temperature are good indicators of drought tolerance in cotton. These



phenotypic and genotypic data will be transferred to the development of drought-tolerant varieties to enhance

yield and its components in cotton genotypes under water stress conditions.



1 Lane 1L-100bp ladder 2)P1-SUVIN, 3)P2- CNH28I, Samples from 1-15:F 11 progenies

2 Lane1)1L-100bp er 2)P1-SUVIN, 3)P2- CNH 28I, Samples from 16-32:F 11 progenies

Figure 1.11.1: SSR Marker BNL1153 on chromosome 25 linked to Osmotic Potential (OP)

**Table 1.11.1: Parental Polymorphic survey with SSR markers linked to drought tolerant traits**

| SN. | Name of Primer | Chromosome No. | Character | Forward Sequence            | Reverse Sequence              | Polymorphism | Band Size (bp) |             |
|-----|----------------|----------------|-----------|-----------------------------|-------------------------------|--------------|----------------|-------------|
|     |                |                |           |                             |                               |              | P1 Suvin       | P2 CNH-28 I |
| 1.  | NAU255 7       | C15            | CIR       | F: CAACCATTCAAGCTT CTTGTG   | R: CGAGGACTCCTTC ATGTCT       | P            | 50             | 60          |
| 2.  | CIR143b        | C15            | CIR       | F:AAGAAAGAAAGAA ACTTCCC     | R:GCCATTAAGAAGG ACAAA         | P            | 120, 290       | 120         |
| 3.  | MUSB0 818c     | C15            | CIR       | F:ACTCCGCGAAC ACAGTG        | R:GTCGCCAGGCCG TGAAAC         | P            | 260,350        | 260, 400    |
| 4.  | JESPR0 205     | C15            | CIR       | F:CCCAACTCTTC CAAACTTGAG    | R:GTACATATAGATG CCCTCGTG      | P            | 110            | 90          |
| 5.  | BNL105 3       | C21            | CIR       | F:AGGGTCTGTCAT GGTTGGAG     | R:CATGCATGCGTAC GTGTGTA       | P            | 180            | 180,200     |
| 6.  | NAU247 4       | C1             | OP        | F:CTATTACCTCCG CCGTAGTG     | R:CTGAGCTAATGCA AGAAGCA       | P            | 190            | 200,230     |
| 7.  | BNL359 4b      | C6             | OP        | F:AGGGATTTTGAT TGTTGTGC     | R:TGAATTCAAAACA AATGTTAGCC    | P            | 200            | 190,230     |
| 8.  | BNL288 4       | C6             | OP        | F:TCAACTCATACC AAATCAATTCC  | R:CCCTGTTTGTT AATGGGT         | P            | 190            | 180         |
| 9.  | BNL325 9       | C14            | OP        | F:TTTTGAAATTCCA GCGAAGG     | R:GTCAATACCTGCT TCTCCACG      | P            | 240            | 200         |
| 10. | BNL115 3b      | C25            | OP        | F:CTTTATCCGGAG ACGGAACA     | R:CTAACCTTGCTC ACCCCC         | P            | 340,395        | 350         |
| 11. | BNL317 3b      | C1             | RWC       | F:AAGCTATAAAGA GAAGATGCAACG | R:TTTAACCATTGCG TGCAAAA       | P            | 150            | 150,180     |
| 12. | JESPR2 30c     | C19            | RV        | F:GGGACTAAAGAA GTAATTATGCC  | R:GAAACCCCTGGC CATGAG         | P            | 290            | 320         |
| 13. | BNL334 7       | C19            | RV        | F:AGACTGACATGC AGCTTCCA     | R:ATCTTAATTTGAG TATAGGATAGGGG | P            | 190            | 150         |
| 14. | MUSSO 96a      | C20            | RV        | F:TCTGATAAACAG CGACAAAAGG   | R:AAGAAATGAACTC TCACATGGC     | P            | 250,320        | 255         |
| 15. | CIR061b        | C24            | RV        | F:TTAGTCCTCTAC ATACCGAA     | R:TCATAATAAGGC GTGG           | P            | 140            | 170         |

CIR-Carbon Isotope Ratio, OP-Osmotic Pressure, RWC-Relative Water Content, RL-Root Length, RV-Root Volume



### 1.12 Project Name: Exploration of genomic resources for identification of candidate genes and promoters for cotton improvement.

PI: Raghavendra KP

Co-PI: Pooja Verma, Joy Das, Rakesh Kumar

#### Salient findings

Transgenic tobacco plants carrying the cry1D gene were established in a contained facility, and the protein was isolated from cry1D-positive transgenic tobacco plants. The bio-efficacy of study of extracted protein against *Spodoptera litura* through the diet incorporation method revealed that the truncated Cry1D protein was not effective against the *Spodoptera litura*. The results confirmed the preliminary test results obtained using the heterologously expressed recombinant Cry1D protein isolated from bacterial cells. Transformation of the cry1Da gene construct to develop transgenic events for pink bollworm resistance through the In-planta method generated a cry1D positive putative T0 transformants, and the hardened plants were transferred to a polyhouse to harvest T1 seeds for further analysis.

### 1.13 Project: Enhancing climate resilience and ensuring food security with genome editing tools- Genome editing in Cotton

PI: Raghavendra KP

Co-PIs: Rakesh Kumar, Joy Das, Pooja verma, Rahul Phuke and Jayant Meshram

**Importance of the project:** Genome editing has significantly advanced crop improvement by enabling precise modifications in plant genomes. In cotton, recent high-throughput omics techniques have identified key genes related to stress resistance, fiber quality, seed development, and plant architecture, which can be targeted with greater accuracy using CRISPR/Cas genome editing tools to develop agronomically superior genotypes / varieties with improved traits of economic significance in cotton.

#### Salient findings

Initial strides were made in augmenting cotton (*Gossypium hirsutum* L.) via genome editing for desired traits. Target genes, including GhNB associated with compact architecture and determinate sympodial shoots, GhGalT1 for fibre quality and yield, GhFAD2-1 for seed oil quality enhancement, and GhPEPC for seed oil content augmentation, were identified for genome editing in cotton. CRISPR cas9 vectors for genome editing in cotton were procured from Addgene, USA. The targeted coding sequence of the candidate genes (GhFAD2-1, GhGalT1, GhNB, and GhPEPC) were PCR amplified from the Coker 312 genotype, cloned, and subjected to sanger sequencing for confirmation of the allelic status. The identified sequences were utilized to design the sgRNAs. In-vitro sgRNAs validation, selection, and construction of target gene specific sgRNAs cassettes is in progress.

### 1.14 Project Name: Identification, cloning, and functional validation of genes/enzymes involved in chitin biosynthesis pathway of Cotton Pink Bollworm

*(Pectinophora gossypiella)*

PI: Joy Das

CO-PIs: Rakesh Kumar, Raghavendra KP

#### Salient findings

Identification and validation of suitable House-Keeping Genes for gene expression studies at all developmental stages of Pink Bollworm

Nine house-keeping genes were identified from the PBW transcriptome, which are essential for accurate gene expression studies. Among these, the  $\alpha$ -tubulin gene ( $\alpha$ -tub) demonstrated consistent expression across all developmental stages of PBW, making it a reliable candidate for normalization in quantitative gene expression analyses (Figure 1.14.1).

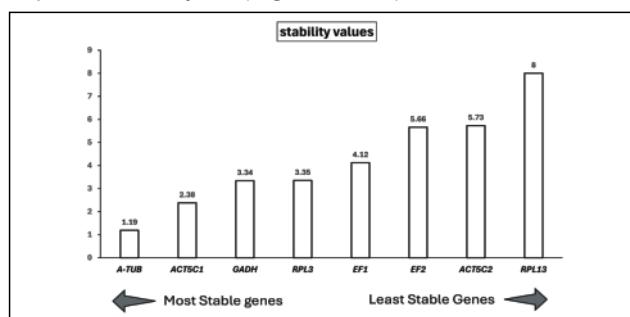



Figure 1.14.1: Identification and validation of  $\alpha$ -tubulin as the most suitable normaliser reference gene for gene expression studies in PBW.

#### Optimization of In-House Protocol for dsRNA Synthesis:

An in-house, low-cost protocol for synthesizing in vitro dsRNA with high yield and quality was successfully optimized. This protocol provides a cost-effective method for producing dsRNA, a critical component for RNA interference (RNAi) experiments.

#### RNAi-Mediated Targeting of Chitin Synthesis Genes:

The chitin synthesis genes PgAGM and PgUAP, which were targeted by RNAi in PBW, led to approximately 30% and 40% mortality rates, respectively. Additionally, various detrimental phenotypes were observed, including molting defects, poor growth, and significant weight loss (Figure 1.14.2).

These results functionally validate the roles of PgAGM and PgUAP in PBW development, confirming their potential as targets for RNAi-based pest management strategies.

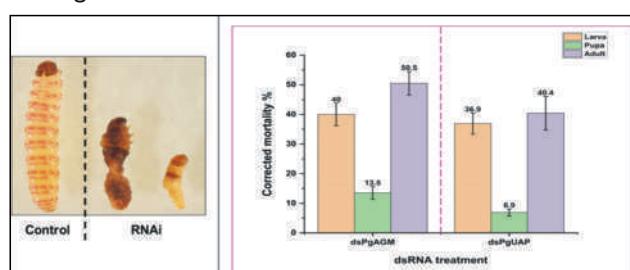



Figure 1.14.2: Effects of RNAi mediated silencing of targeted chitin biosynthesis genes (dsAGM and dsUAP) on pink bollworm

**Recombinant Expression and Purification of PgAGM and PgUAP:** The recombinant expression of both PgAGM and PgUAP proteins was successfully performed, followed by purification to homogeneity using Ni-NTA affinity chromatography and gel filtration techniques, exhibiting approximate sizes of ~60 kDa for PgAGM and ~55 kDa for PgUAP (Figure 1.14.3). Successful expression and purification of these proteins are critical steps toward functional characterization and further biochemical studies.

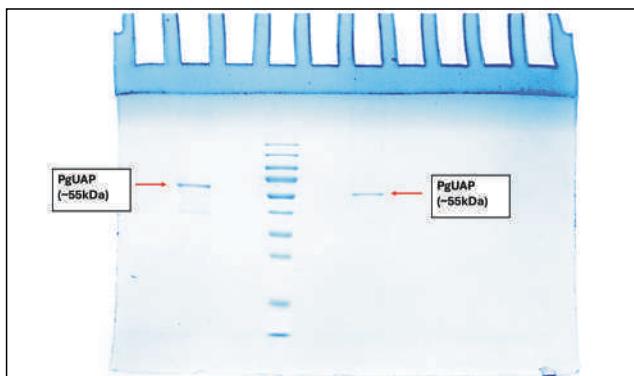



Figure 1.14.3: SDS-PAGE for purified recombinant proteins (PgAGM and PgUAP)

### 1.15 Project Name: Precise base editing in Acetolactate synthase (ALS) gene for herbicide tolerance in Cotton

PI: Rakesh Kumar

Co-PI (s): Joy Das, KA Molla (ICAR-NRRI Cuttack)

**Importance of the study:** The objective of the study is to develop a CRISPR/Cas-mediated genome editing protocol in cotton.

#### Salient findings

A standardized protocol was established for the expression and purification of 6x-His-tagged recombinant GhALS protein and its mutants (Fig 1.15.1). Amplification, cloning, and sequence confirmation of cotton small RNA promoter sequences for pU6-26\_Gh6.7 and pU6-29\_Gh6.3 were completed in the pENTR™/D-TOPO™ vector, and mobilization into the promoter-less gus expression vector pGWB433 vector for their functional validation through transient expression assay (Fig 1.15.2)

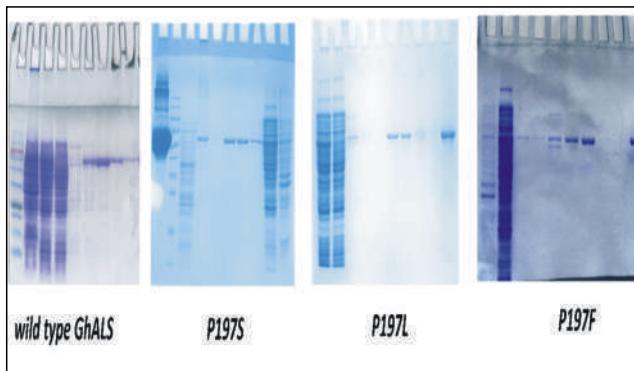



Figure 1.15.1: 6X-His tag-based Ni-NTA Affinity purification of wild-type GhALS and its various mutants

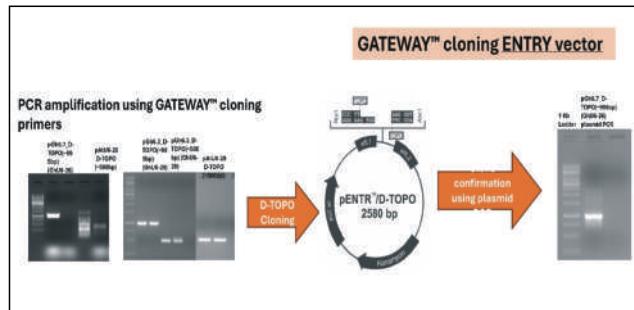



Figure 1.15.2. Cloning of cotton small RNA promoter sequences into pENTER/D-TOPO vector

### 1.16 Project Name: Implementation of PVP legislation 2001 and DUS testing of cotton under ICAR-SAU system

PI: V. Santhy (PI),

Co-PI: A. Manivannan

**Importance of the study:** The project aims for the establishment and maintenance of database on extant cotton varieties, conduct DUS testing of new varieties under common knowledge, and characterize farmers' varieties for morphological characteristics based on National DUS test guidelines as a part of providing variety registration and protection. The database will be maintained primarily in digital format. In addition, maintenance breeding of reference cotton varieties is undertaken for their regular use in DUS testing of candidate genotypes.

#### Salient findings

The trial at Nagpur consisted of 4 entries under the first year and 98 entries under second year testing, while, at Coimbatore consisted of 15 under first year and 113 entries under second year testing along with 50 gazette notified varieties since 2017, grown as reference genotypes. A few unique traits such as full plant pigmentation, loose flower opening, chain boll bearing, blunt boll tip, bigger sized seeds with more than 14.0 g seed index were observed during the season. More reference varieties under maintenance include example varieties also and a total of 31 such *G. hirsutum* varieties and 3 *G. barbadense* varieties are being maintained and multiplied.

Monitoring of DUS trials was done on 20th November 2023 at Nagpur and 2nd February 2024 at Coimbatore centre. Among the 18 CICR varieties submitted for plant variety registration with PPV&FRA, DUS testing of 13 were completed and certificates issued.



### 1.17 Project Name: Development of high strength cotton genotypes by reducing the short fibre content

PI: S. Manickam

Co-PI: A. H. Prakash, J. Gulsar Banu

**Importance of the study:** The identification and development of high-strength culture will be useful for further breeding programmes. By developing suitable geometry and agronomy, yield maximization can be achieved in high strength cultivars that may be released as variety for the benefit of both farmers and end users.

#### Salient findings:

Long staple cultures (19) with good strength were evaluated in a replicated trial in organic situation along with Suraksha as a check variety for yield and fibre quality. Analysis of data indicated significant differences among the cultures for most of the studied characters. The highest seed cotton yield of 2845 kg/ha was recorded in culture BB 16-1-1 as compared to 1302 kg/ha yield recorded in check variety, Suraksha (Table

1.17.1). For fibre quality, the culture YLS 19-2 was the best for fibre length with 32.1 mm of UHML, whereas, the culture YLS 21-2 was the best for tenacity with 29.5 g/tex. These cultures were also assayed for physiological and biochemical parameters viz., nitrate reductase, total soluble protein, proline content, total soluble sugars, chlorophyll contents, and carotenoid content at 30, 60 and 90 days after sowing. The perusal of data indicated that the best culture for yield also recorded the highest nitrate reductase activity at 30, 60 and 90 DAS. Different cultures showed variable responses for total soluble protein (ug/g), proline (ug/g), total soluble sugar content (ug/g) and chlorophyll content in at different stages of data recording.

Comparison of fibre quality of these cultures evaluated under conventional growing conditions (2020-21) and organic conditions (2023-24) indicated that there was not much variation in the fibre quality traits because of the growing conditions.

**Table 1.17.1 Per se performance of long staple cultures for yield and quality grown under organic conditions**

| ENTRY     | BOLL WEIGHT (g/boll) | SEED COTTON YIELD (kg/ha) | UPPER HALF MEAN LENGTH (mm) | UNIFORMITY INDEX | MICRONAIRE (µg/inch) | TENACITY (g/tex) |
|-----------|----------------------|---------------------------|-----------------------------|------------------|----------------------|------------------|
| BB 1-1-1  | 4.3                  | 2116                      | 28.5                        | 84.5             | 4.3                  | 24.7             |
| BB 1-2-1  | 4.0                  | 1664                      | 30.7                        | 84.3             | 4.3                  | 27.1             |
| BB 2-2-1  | 4.5                  | 2191                      | 30.3                        | 83.9             | 4.6                  | 26.8             |
| BB 4-2-1  | 3.6                  | 1213                      | 29.6                        | 84.3             | 4.6                  | 26.6             |
| BB 4-2-2  | 4.1                  | 1587                      | 30.8                        | 84.7             | 4.3                  | 27.2             |
| BB 5-2-1  | 4.1                  | 1268                      | 29.8                        | 83.2             | 4.3                  | 26.9             |
| BB 10-1-2 | 4.0                  | 1102                      | 30.6                        | 84.1             | 4.3                  | 26.9             |
| BB 13-1-2 | 4.1                  | 2204                      | 29.1                        | 84.4             | 4.0                  | 24.8             |
| BB 16-1-1 | 4.8                  | 2845                      | 31.8                        | 84.2             | 4.5                  | 27.4             |
| BB 18-1-1 | 4.5                  | 2244                      | 31.3                        | 83.8             | 4.3                  | 27.0             |
| BB 18-1-2 | 3.9                  | 1830                      | 27.9                        | 82.5             | 4.7                  | 24.8             |
| BB 18-2-1 | 4.6                  | 2263                      | 29.8                        | 84.1             | 4.7                  | 26.6             |
| YLS 3-1   | 4.0                  | 1759                      | 30.1                        | 84.1             | 4.1                  | 26.8             |
| YLS 15-1  | 4.5                  | 1526                      | 31.1                        | 81.7             | 4.8                  | 27.7             |
| YLS 19-2  | 3.7                  | 1009                      | 32.1                        | 84.1             | 3.8                  | 27.5             |
| YLS 21-2  | 4.2                  | 1866                      | 31.4                        | 84.1             | 4.4                  | 29.5             |
| YLS 25-1  | 3.9                  | 1292                      | 30.6                        | 84.1             | 4.0                  | 26.9             |
| YLS 33-1  | 4.1                  | 1542                      | 28.9                        | 84.5             | 4.0                  | 26.0             |
| YLS 70-2  | 4.5                  | 1611                      | 28.7                        | 82.7             | 4.0                  | 24.8             |
| Suraksha  | 3.8                  | 1302                      | 31.0                        | 83.2             | 3.5                  | 29.0             |
| Mean      | 4.2                  | 1722                      | 30.2                        | 84.0             | 4.4                  | 26.9             |
| CD        | 0.5                  | 664                       |                             |                  |                      |                  |
| CV        | 7.9                  | 24                        |                             |                  |                      |                  |

### 1.18 Project Name: Induced mutagenesis for improvement of ELS cotton (*G. barbadense*)

PI: A. Manivannan

Co-PIs: K. Rathinavel, K. Shankarganesh, A. Sampath kumar

**Importance of the study:** Fast Neutron (FN)

mutagenesis of cotton could aid in developing improved fibre quality varieties. Induced mutations increase the variability and broaden the genetic base of crop plants. Hence, the objective of the study was to optimize the mutagenic dosage of FN to induce higher variability for desired traits, measure the extent of variability among mutagenic population, and identify the mutants with



high yield, ginning out turn (GoT) and fibre quality traits.

#### Salient findings

- The LD50 was fixed to the dose of 30 Gy based on probit analysis. Among these doses of FN, 30 Gy dose showed the highest effectiveness (1.51%) and efficiency (2.99%) compared with the other doses.
- Spectrum of mutant like Variegated, Chlorina, Glandless, Brown linted, Big boll, and Dwarf were identified in M2 generations.
- Mutants were screened for higher yield, GoT and fibre traits in M2 generations and advanced to M4 generations.
- Twenty-five mutants for yield and GoT along with fibre quality traits were selected from the M3 generation. These mutants were performing better than control in terms of GoT and other fibre quality traits. The majority of the selected M3 mutants also performed better than control variety (Suvin) for single plant yield.
- Five mutants were identified in the M4 generations, namely S M6(S 30-4785-2-14-6), S M9(S 30-4423-6-4), S M10(S 30-1012-5-15), S M15(S 30-589-6-6), and S M25(S 30-3411-5-8), and they showed higher GoT (>35%), single plant yield, and fibre quality traits.

#### 1.19 Project Name: Breeding for high yielding, early maturing sucking pest tolerant extra-long stable *G. barbadense* genotypes with improved fibre

#### properties

PI: A. Manivannan

Co-PIs: K. Ramaesh

**Importance of the study:** Extra-long-staple (ELS) cotton is known for its high staple length, strength, and fineness. Fabrics made of ELS cottons fray less, pill less, wrinkle less, and even fade less than fabrics made with their short-staple counterparts. Despite the virtues of supreme fibre traits, ELS cotton (*G. barbadense*) is low in yield. To meet the ever-increasing demand for ELS cotton in India, this project was developed to increase the yield of *G. barbadense* along with superior fibre properties.

#### Salient findings

Product profiling of ELS cotton (*G. barbadense*) varieties ELS Cotton (*G. barbadense*) released varieties, namely CICR B Cotton 37, CICR B Cotton 45, and CICR B Cotton 55 varieties were profiled for their unique advantage under premium fibre category. CICR B cotton 37 with a length of 34.8 mm, strength of 38.45 and micronaire of 3.65; CICR B cotton 45 with a length of 34.65 mm, strength of 36.75 and micronaire of 3.3; CICR B cotton 55 with a length of 34.3 mm, strength of 38.3 and micronaire of 3.6. Among them CICR B Cotton 45 showed highest yield (1334 kg/ha), CICR B cotton 37 of 1321 kg/ha and CICR B Cotton 55 with yield of 1320 kg/ha. (Table 1.19.1). These varieties had a higher yield advantage.

Table 1.19.1 Product profiling of ELS cotton (*G. barbadense*) varieties

| Attribute        | CICR B Cotton 37 | CICR B Cotton 45 | CICR B Cotton 55 | Suvin |
|------------------|------------------|------------------|------------------|-------|
| UHML (mm)        | 34.80            | 34.65            | 34.30            | 37.5  |
| Strength (g/tex) | 38.45            | 36.75            | 38.30            | 39.5  |
| Micronaire       | 3.65             | 3.30             | 3.6              | 3.7   |
| GoT(%)           | 32.1             | 33.0             | 32.7             | 32.1  |
| SCY (Kg/ha)      | 1321             | 1334             | 1320             | 1062  |

**Promising ELS genotypes in AICRP trials during 2023-24:** CCB24-1 and CCB 24-2 (IET); CCB22-1, CCB22-2. and CCB23- 1 (IET Br14a)

**Insect resistant lines:** CCB-25 and CCB-28 for Aphids; CCB-28 for both Aphid and Jassid- tolerant were identified for sucking pest tolerance.

**Evaluation of Advanced Progenies for sucking pest tolerance:** BC2F10 generation of high yielding and sucking pest tolerance were evaluated, namely H1 Suvin x (ICB-241 x CCB-29), H2 Suvin x (EC-18 x CCB-3), H3 Suvin x (ICB85 x CCB-29), H5 Suvin x (ICB126 x CCB-29), H6 Suvin x (ICB124 x CCB-29), H7 Suvin x (ICB124 x CCB-6), H8 Suvin x (ICB-124 x CCB-5), H9 Suvin x (ICB-27 x CCB-12), H10 Suvin x (ICB-214 x CCB-6), H11 Suvin x (EC18 x CCB-29).

**Identification of sucking pest-tolerant genotypes in *G. barbadense*:** Among the hairy lines screened for various sucking pests, lines H1, H5, H6, and H8 were found to be moderately tolerant. SEM leaf anatomy of these lines showed, hirsute-type trichomes in H1, pilose-type trichomes in H5 compared with glabrescent leaves of susceptible lines. This leaf anatomical structure provides resistance against sucking pest.

**Evaluation of Early Advanced lines for yield :** BC1F6 generation of high-yielding namely, EA line derivatives Suvin x (EA241 x CCB-29) (A1), Suvin x (EA118 x CCB-3) (A2), Suvin x (ICB85 x EA154) (A3), Suvin x (EA155 x Suvin) (A4), Suvin x (ICB124 x EA113) (A5), Suvin x (EA30 x CCB-6) (A6), Suvin x (ICB-124 x EA10) (A7), Suvin x (EA209 x Suvin) (A8), and Suvin x (EA118 x



CCB-29) (A9). Among them five entires were shown promising yield viz., A8 (1679 kg/ha), A4 (1546 kg/ha), A9 (1541 kg/ha), A1 (1423 kg/ha), and A7 (1411 kg/ha)

**Germplasm:** A set of 327 *G. barbadense* germplasm is being maintained at CICR, Regional Station, Coimbatore.

**Mutants:** Brown linted mutant identified from the EA 203, Big boll mutant from EA159 were evaluated for the past three years (2021-2023) and found to be stable.

**Seed multiplication:** Mass multiplication of seeds of released varieties, CICR B Cotton 37, CICR B Cotton 45, and CICR B Cotton 55; cultures sponsored in AICRP trials (CCB 22-1, CCB 22-2, CCB 23-2, CCB 24-1, and CCB 24-2) and advance cultures (CCB 3, CCB 4, CCB 5, CCB 7, CCB 8, CCB 12, CCB 13, CCB 28, CCB 64, CCB 64B, CCB 129, CCB 141, CCB 142)

### **1.20 Project Name: Unraveling the Differential Expressed Proteins (DEP) in cotton genotypes with contrasting resistance to leafhopper and development of the protein biomarkers/functional markers for leafhopper resistance**

**PI:** A. Manivannan

**Co-PI:** K. Shankarganesh

**Importance of the study:** Cotton insect resistance and its molecular mechanism involved in plant defense against pests is not well elucidated. The Global proteome analysis of *Gossypium* spp. in relevance to leafhopper resistance is expected to aid in developing resistant cotton varieties. Insights from plant-insect interaction molecular studies will be valuable in devising resistance strategies against leafhopper attacks in cotton.

#### **Salient Findings**

Putative proteins involved in cotton-based resistance to leafhoppers

- Our combined KEGG pathway and GO enrichment analyses identified a diverse group of defense-related DEPs that may be involved in resistance of cotton plants to leaf hopper infestation.
- A total of 88 DEPs were shared between resistant and hybrid cotton.
- The majority of proteins associated with stress response, including polyphenol oxidase (A0A1U8MR36), carboxypeptidase (A0A1U8PDJ2), probable cinnamyl alcohol dehydrogenase 1 (A0A1U8LPT0), heat shock 70 kDa protein 15-like (A0A1U8HYA9), and subtilisin-like protease SBT1.9 (A0A1U8MSB0), were highly expressed in resistant and hybrid cotton.
- Proteins involved in photosynthesis were down-regulated in all genotypes after leafhopper infestation.
- Photosynthesis-related proteins such as sedoheptulose-1, 7-bisphosphatase (A0A1U8M9I6), malate dehydrogenase [NADP] chloroplastic (A0A1U8JCZ1), ATP synthase subunit beta (Q2L917), and ribulose bisphosphate carboxylase/oxygenase activase 2, chloroplastic (A0A1U8MWN6) were down-regulated.

#### **Protein markers for breeding leaf hopper resistant cotton**

- Comparison of proteome profiles among cotton genotypes revealed that heat shock 70- kDa protein 15-like (A0A1U8HYA9), carboxypeptidase (A0A1U8PDJ2), and probable cinnamyl alcohol dehydrogenase 1 (A0A1U8LPT0) are candidate proteins. In particular, these proteins were expressed in resistant genotypes, but not in susceptible.
- We found only one (uncharacterized protein LOC107904777, A0A1U8J8U7) that was significantly up-regulated (FC - 26.929) in the resistant genotype upon leafhopper infestation.
- Structural and functional annotations of particular uncharacterized proteins may result in the identification of new structures, facilitating the introduction of new functions and interactions.
- We hypothesize that this uncharacterized protein contributes to a physiologically advantageous against leaf hopper infestation response.

#### **Validation of proteins by qRT-PCR analysis**

- Five candidate proteins were randomly selected, and their expression was confirmed by qRT-PCR analysis.
- The transcripts of BTR1-like isoform X2, 60S ribosomal protein L7-4, heat shock 70 kDa protein 6, and chaperone protein ClpB1 were highly expressed in resistant and hybrid after leaf hopper infestation.
- Malate dehydrogenase protein genes have minimal expression patterns in both resistant and susceptible genotypes.
- The results were consistent with the proteomics analysis and confirmed a positive correlation between protein abundances and transcripts for all tested genes.

### **1.21 Project Name: Development and evaluation of ELS interspecific hybrids with better yield and fibre quality**

**PI:** K. Baghylakshmi,

**Co-PI:** M. Amutha, A. Sampath Kumar

**Importance of the study:** The demand for Extra Long Staple (ELS) cotton in India is far more than the production. As a result, a significant amount of imports is needed to meet the demand. H × B hybrids act as an alternate to G barbadense varieties in the supply of Extra Long Staple Cotton. Hence, there is an urgent need to promote these cottons, whose quality is closer to that of modern textile mills demand.

#### **Salient findings**

The H × B hybrids, namely CCH15-1 × ICB284 (Fig 1.21.1), CCH15-1 × CCB 29, Suraj × ICB 99, MCUVT5 × ICB 284, and MCUVT5 × CCB 143 B, were stable for three years of testing, and the average yield was around 4000-4500 kg/ha. They combined better fiber quality with more than 39mm fiber length and 38 g/tex fiber strength. The GOT of all five hybrids were >34%. The hybrid Suraj × ICB29 and Suraj × ICB258 were found to be free of all



diseases. All the hybrids were showing resistance to moderate resistance to sucking pests and bollworms. While developing parental lines for H × B hybrids, 7 barbadense lines outperformed Suvin in fibre and yield traits (Table 1.21.1). These *G. barbadense* lines were early maturing and compact when compared with Suvin. A light brown colored lint line from the *G. barbadense* line

was identified (GbAL7-CC) (Fig 1.21.2). The line will be further evaluated for stability and registered for colour lint. A stem weevil resistance *G. hirsutum* line (Gh-STR-1) was identified in a segregating population. This line showed no gall formation for two consecutive years under field conditions which will be evaluated further.

**Table 1.21.1 Yield and Fiber Properties of Advanced barbadense lines**

| S.No | Advanced Bt Lines (F8)      | SBW (g) | SCY(kg/ha) | GOT (%) | FL (mm) | FS (g/tex) | Mic (μ) |
|------|-----------------------------|---------|------------|---------|---------|------------|---------|
| 1.   | GbAL1                       | 3.1     | 999        | 32      | 34.8    | 34.1       | 3.0     |
| 2.   | GbAL 2 (semi compact)       | 3.2     | 980        | 35      | 36.0    | 34.0       | 4.0     |
| 3.   | GbAL 3                      | 3.1     | 971        | 31      | 36.1    | 36.2       | 3.1     |
| 4.   | GbAL4                       | 3.0     | 900        | 32      | 37.0    | 34.8       | 3.0     |
| 4.   | GbAL5 (double cross)        | 3.0     | 899        | 30      | 37.2    | 36.0       | 4.0     |
| 6.   | GbAL6 (Semi dwarf)          | 3.2     | 1010       | 32      | 36.0    | 36.0       | 3.1     |
| 7.   | GbAL7 (Three-way cross)     | 3.3     | 1015       | 33      | 36.1    | 34.8       | 3.4     |
| 8.   | GbAL7 CC (Light brown lint) | 3.0     | 905        | 32      | 34.2    | 34.2       | 3.4     |



Fig 1.21.1 HxB hybrid CCH15-1XICB284 plant, flower boll and fiber



Fig 1.21.2 H x B Light brown lint (GbAL7-CC) selected from segregating line GbAL7

**1.22 Project Name: Development of varieties of upland cotton having better fiber traits and tolerance to CLCuD**

**PI:** Subhash Chandra

**Co-PIs:** V. N. Waghmare

**The importance of the study:** The study aims at the development of *G. hirsutum* genotypes having better fibre traits and tolerance to CLCuD.

**Salient findings**

- In two station field trials conducted during 2023-24, each comprising 16 (total of 32 advanced cultures derived from 14 different crosses), 28 cultures were found to be resistant to CLCuD (PDI < 2%). In contrast, high-yielding check F 2228 and susceptible check HS 6 recorded PDI values of 4.85% and 7.26%, respectively. Among these, the genotypes CSH NB 13, CSH NB 14, CSH NB 23, and CSH NB 28 were found to be promising, showing seed cotton yields superior to the best check F 2228 (Fig. 1.22.1).

Additionally, the genotypes CSH NB 5, CSH NB 6, CSH NB 8, CSH NB 9, CSH NB 10, CSH NB 24, and CSH NB 27 were found better for fibre length (25.9 mm to 28.80 mm) than best check CSH 3129 (25.7 mm UHML).

- The Non-Bt cotton genotype CSH NB 101 (CSH NB 31-2) was found promising with SCY 18.2 q/ha in comparison with the best check NH 615 (SCY 17.3 q) in the Common Institute Trial 2023-24 which was subsequently sponsored in organic trial (Br 02 c) under AICRP (CZ) 2024-25.
- A single dominant gene reaction was observed for CLCuD resistance during segregation analysis in F2 Populations (N: 260; R: 192; S: 68) derived from cross, i.e., GVS 9 (R) × HS 6 (S).
- The trichome length ( $\mu\text{m}$ ) and trichome density ( $\text{cm}^2$ ) were less in CLCuD-resistant sources (GVS 8 and GVS 9) than in susceptible check HS 5.
- Segregation/distribution pattern for yield attributes i.e., Plant height, Boll Nos, Boll Wt., Monopods, Sympods and Morphological traits i.e. Leaf hairiness, Stem hairiness, Pollen colour, Petal Colour, stem pigmentation etc. was studied.
- A total of four fresh crosses were attempted for pyramiding CLCuD resistance, high-yielding traits, and fiber quality traits using the Bt genes.
- Single plant selections (~30 Nos) with CLCuD resistance (PDI = 0) were identified from several early segregating generations (F2/F3/BC1F1/BC1F2/BC1F3) derived from crosses involving unadapted exotic CLCuD resistant resources, i.e., GVS 8/GVS 9 with cultivated adapted backgrounds.

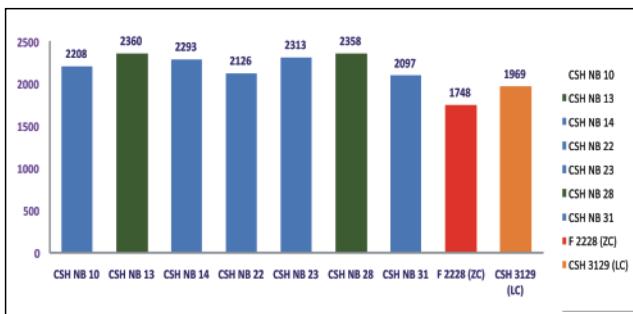



Fig. 1.22.1: Performance of promising cultures for seed cotton yield (kg/ha)

### 1.23 Project Name: Common research trials on evaluation of GEAC approved Bt cotton hybrids in North Zone

**PI:** Subhash Chandra

**Co-PIs:** Rishi Kumar, S. K. Sain and Amarpreet Singh

**The importance of the study:** The study aims to evaluate GEAC approved Bt cotton hybrids for yield attributes, fibre traits, insect-pest reactions and CLCuD resistance reactions for the North zone/Haryana state for further recommendations. Studies on sources of PBW carryover and management at various plant growth

stages are also important in Northern states of India.

#### Salient findings

- In the Common GEAC Trial for the North Zone conducted at ICAR-CICR, RS, Sirsa, seed cotton yields ranged from 20.22 to 39.18 q/ha. Out of 84 entries, 54 BG II hybrids were identified as high-yielding (>28 q/ha) hybrids with favorable agronomic and pest resistance parameters. The CLCuD PDI ranged from 0%-18%. The whitefly population varied from 7.80 to 15.75, jassid from 2.40 to 7.55, and thrips from 15.40 to 28.50 per 3 leaves. Entry 954 recorded the lowest green boll damage (7.50%), while entry 902 had the least open boll damage (4.62%). In the Haryana State Trial conducted at ICAR-CICR, RS, Sirsa, the seed cotton yield ranged from 21.16 q/ha to 35.33 q/ha and out of 16 entries (Haryana state only), about 10 BG II hybrids were identified for seed cotton yield (>31 q/ha) and related parameters. CLCuD PDI ranged from 0 to 18%. Whitefly populations were ranged between 13.90-15.27, Jassid populations varied from 4.54-5.70 and thrips populations ranged between 27.74-33.37 per 3 leaves. Green boll damage due to PBW was the lowest in entry 614 (15.0 %), and open boll damage was the minimum in entry 614 (7.85%).
- The off-season carryover of PBW was studied during 2023-24. The PBW incidence in the unopened bolls collected from cotton stalks at different farmer fields ranged from 5.33%-94.67 % from January to June, 2024. Similarly, PBW larval recovery (Nos.) ranged between 0.00-20.00 and pupal case recovery ranged between 0.00-34.00 based on the average recorded from 50 unopened bolls from stacked cotton stalks.
- Pink bollworm management through insecticide sprays was evaluated with applications initiated at 10%, 20%, 30% and 40% square initiation stages, and also applied based on ETL (5-10% incidence on flowers or bolls) and moth trap activity ( $\geq 8$  moths/trap for consecutive nights). The lowest PBW incidence (10.03%) was recorded in the treatment where sprays started at 10% square initiation, which also recorded the highest yield (8.53 q/ha) and the highest number of sprays (7). Bioassay of PBW (2nd instar larvae) using the topical application method showed the highest mortality with Profenophos 50 EC (83.33%), followed by Bifenthrin 10 EC (80.00%). The lowest mortality was observed with Deltamethrin 2.8 EC, while only 10% mortality was recorded in the untreated control.

### 1.24 Project Name: Development of high yielding varieties & hybrids of diploid cotton (*G. arboreum*) (Station activity)

**PI:** Subhash Chandra

**Importance of the study:** This study aimed to develop the GMS-based *desi* cotton hybrids (*G. arboreum*) and *desi* cotton varieties (*G. arboreum*) amenable to cultivation in North Zone Situations.

## Salient findings

- GMS-based desi cotton hybrid development: One hybrid i.e., CISAA 19-4, was promoted to agronomy trial under AICRP (NZ) 2024-25. Two hybrids (CISAA 22-3 and CISAA 22-1) were promoted to advanced/coordinated trial (Br 25a CHT) under AICRP (NZ) 2024-25. Two hybrids (CISAA 23-3 and CISAA 23-1) were sponsored in National Trial (Br 25a/b) under AICRP (NZ) during 2024-25 after identification under station trial conducted at Sirsa during 2023-24. Seven GMS-based maintainer lines were maintained through sib mating.
- Desi cotton variety development: Two desi varietal cultures (CISA 6-11 and CISA 8-1) were sponsored under the National Trial (Br 22 a) under AICRP (NZ) 2024-25 after identification under station trial conducted at Sirsa during 2023-24. Four fresh crosses were attempted to develop varietal cultures with improved boll weight. A total of 20 Single plant selections were made for better boll weight (2.4 to 2.9 g) and other promising yield attributes. Promising G. arboreum entries i.e. CISA 6-350, CISA 6-295, NA 10, NA 14, NA 16, NA 17, and NA 19 were identified for better spinnability (fibre length > 25 mm).

## 1.25 Project Name: Physicochemical traits determining genotypic response towards accelerated ageing process in cotton

PI:Debashis Paul

Co-PIs: V Santhy, Sunil Mahajan

**The importance of the study:** Standardization of accelerated ageing in cotton to assess the biochemical changes associated with accelerated ageing process.

## Salient findings

- The seeds harvested (at 140 DAS) from middle stratum of the plants showed the least response to accelerated ageing (AA) test.

- The arboreum genotypes were more responsive to the AA process compared to hirsutum genotypes. After 48 hours of ageing, germination (%) was recorded below 65% for the arboreum genotypes whereas it was 72 hours in case of hirsutum genotypes. This result was attributed to the higher seed oil content (%), smaller seed size, and lower seed index (g) of the arboreum genotypes (Figure 1.25.1)
- The biochemical indicators of seed ageing like lipid peroxidation and volatile aldehyde emission showed an increasing trend with ageing duration in both arboreum (Figure 1.25.2) and hirsutum genotypes (Figure 1.25.3); however, the magnitude was higher in arboreum genotypes
- Six months of ambient storage was equivalent to 72 hours AA test at 450C and 90 (%) RH.




Figure 1.25.1:Response of Accelerated ageing conditions for 48, 72 and 96 hours on cotton genotypes; a: G. arboreum; b: G.hirsutum; Comparison between G. arboreum and G.hirsutum genotypes for seed size (mm) and seed index (c) and for Seed protein % and oil content % (d) in untreated seeds

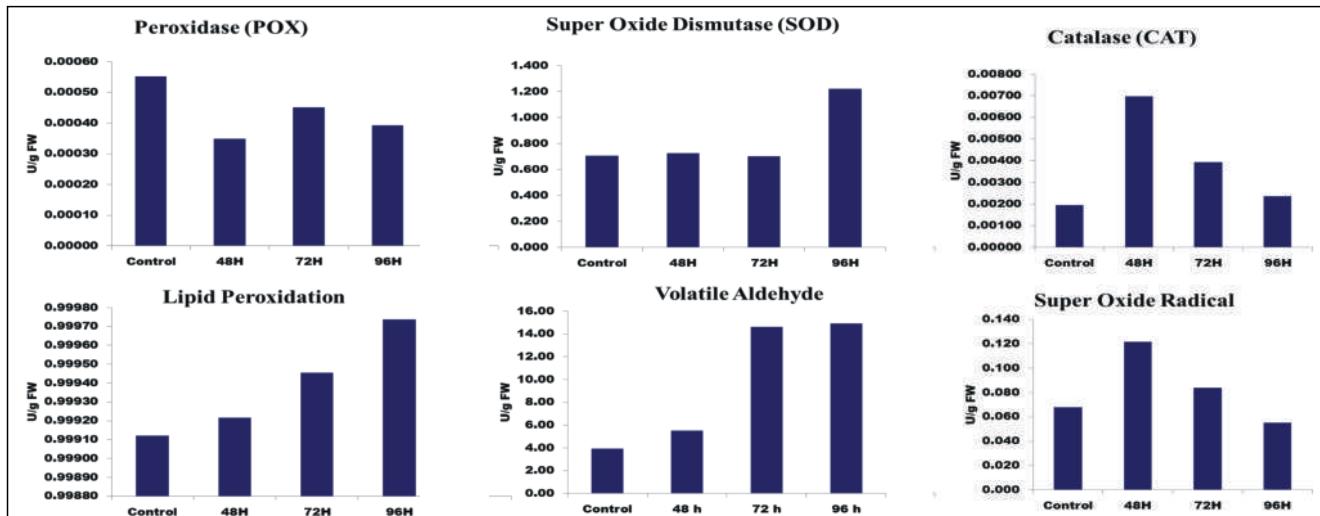



Figure 1.25.2: Response of accelerated ageing condition for 48, 72 and 96 hours on biochemical changes in G. arboreum genotypes

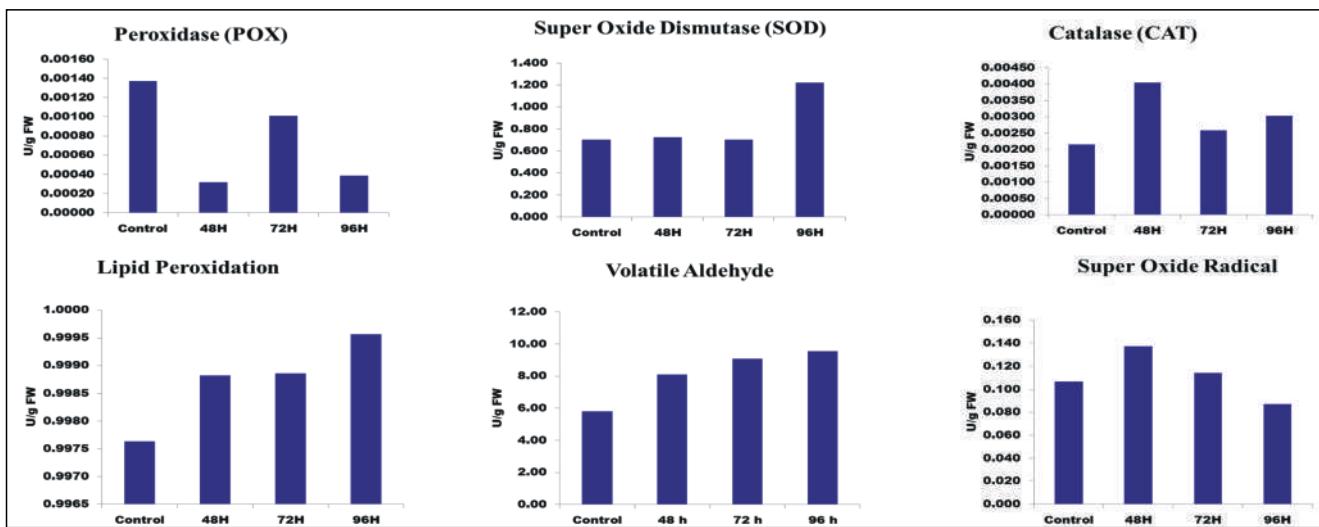



Figure 1.25.3: Response of accelerated ageing for 48, 72 and 96 hours on biochemical changes in *G. hirsutum* genotypes

### 1.26 Project Name: Combating seedling burning in cotton through induction of early heat tolerance in North Zone

PI:Debashis Paul

**Co-PIs:** Amarpreet Singh, Subhash Chandra, K. Velmourougan

**The importance of the study:** This study aimed to determine the extent of early seedling burning in cotton and to identify possible seed treatment combination options for early heat tolerance.

#### Salient findings

- A comprehensive farmers' field survey was conducted across multiple locations in all three North Zone states i.e., Punjab, Haryana, and Rajasthan to assess the extent of seedling mortality. The findings revealed a significant reduction in the plant population due to seedling burning, which can be attributed to adverse climatic or soil conditions. The extent of damage was categorized as follows: 12 locations reported more than 50% seedling burning; 26 locations recorded 41–50% seedling burning; 32 locations showed 31–40% seedling burning; and only 4 locations had seedling burning limited to up to 10% (Figure 1.26.1).

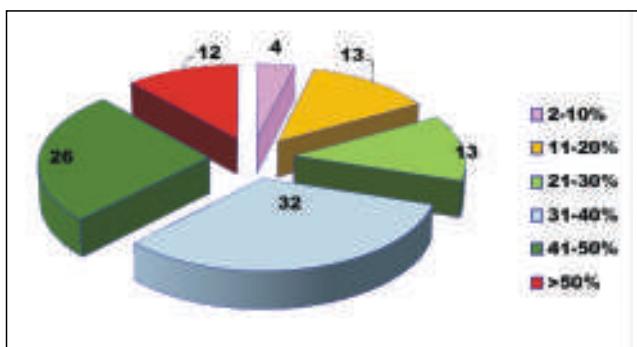



Figure 1.26.1: Percentage of farmer's field location under various categories of plant population reduction

### 1.27 Project Name: Evaluation of commercially available Bt cotton hybrids for the state of Haryana

PI:Debashis Paul

**Co-PIs:** Rishi Kumar, Amarpreet Singh

**The importance of the study:** To evaluate the commercially available BG-II hybrids with respect to the proportion of non-Bt seeds present as 'refugia' in seed packets.

#### Salient findings

- The percent of non-Bt plants ranged from 0% to 18.21 % among the 40 hybrids evaluated during 2023-24.
- Among the hybrids evaluated, 45% hybrids were within the recommended limit of 'refugia' (5-10%), 40% hybrids were below the recommended limit of 'refugia' (<5%) and 15% hybrids were above the recommended limit (>10%).
- As compared to 2022; the higher number of hybrids were within the recommended limit of refugia in 2023 (Figure 1.27.1).

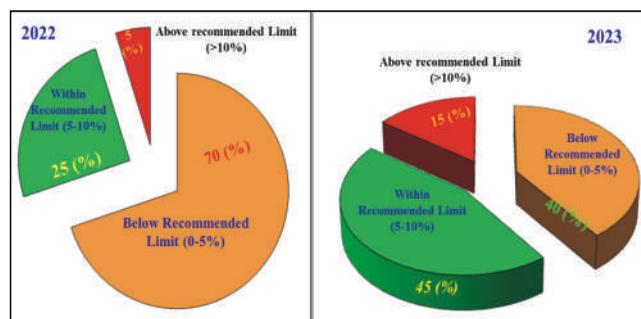



Figure 1.27.1: Refugia in Bag (RIB) status of the hybrids evaluated in 2022 and 2023

## 2.CROP PROTECTION DIVISION

### 2.1 Project Name: Monitoring insecticide resistance in American bollworm, *Helicoverpa armigera* (Hubner) populations from cotton growing regions of Maharashtra and Gujarat (2021-26)

PI: Shah Vivek

Co-PI: Rachna Pande

**Importance of the study:** Insecticide applications under field conditions are subjected to various environmental factors that lead to sub-lethal dose exposure of insects. The continuous use of the recommended insecticides under field conditions over a period of time has led to the development of resistance. Hence, field efficacy of recommended insecticides should be periodically monitored. In this context, the present study aimed to determine the status of resistance in American bollworm to recommended newer insecticides and selected conventional insecticides under laboratory conditions.

#### Salient findings

- The American bollworm, *Helicoverpa armigera* population was screened against five newer (Chlorantraniliprole, flubendiamide, indoxacarb, spinosad, emamectin benzoate) and three conventional (Cypermethrin, novaluron, profenofos) insecticides using the diet incorporation method.
- Among the different insecticides evaluated using newer molecules, emamectin benzoate had the best efficacy against *Helicoverpa armigera*, whereas, indoxacarb was the least effective. Comparing the relative resistance in terms of lethal concentrations, the values were range bound across years 2021-22, 2022-23, and 2023-24 (Fig. 2.1.1, 2.1.2 and 2.1.3).
- Among the different conventional insecticides evaluated, profenofos was found to be the best, followed by novaluron and cypermethrin. Comparing the relative resistance in terms of lethal concentrations, an increase was noted across years 2021-22, 2022-23, and 2023-24 (Fig. 2.1.4, 2.1.5 and 2.1.6).
- In case of insecticide compatibility studies, most insecticides and fungicides dissolve easily in water when added singly, except for flonicamid, emamectin benzoate, pyraclostrobin, and thiamethoxam.
- The pH change was in the alkaline range for most insecticides and fungicides in the range of 0.1- 0.4 except for monocrotophos, which was in the acidic range of 0.8- 0.9 when added singly.
- Sedimentation was observed in all combinations involving diafenthiuron, carbendazim, propineb, pyraclostrobin, and copper-oxychloride as a component.
- Combinations should be avoided, especially with copper oxychloride, because phase separation is very evident in such combinations.

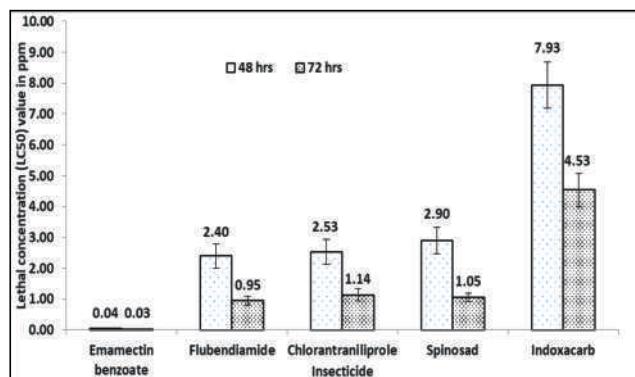



Fig 2.1.1. Mean lethal concentration (ppm) of populations screened against newer insecticides (2021-22)

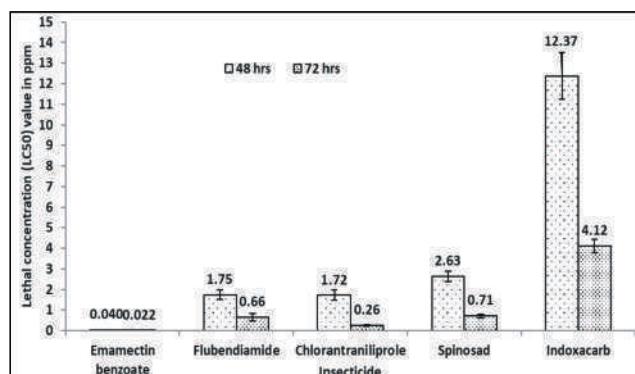



Fig 2.1.2. Mean lethal concentration (ppm) of populations screened against newer insecticides (2022-23)

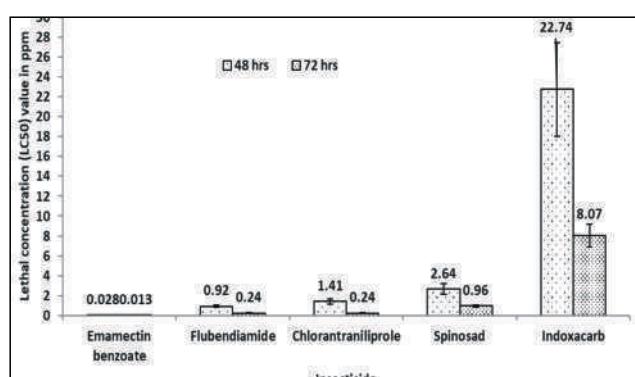



Fig 2.1.3. Mean lethal concentration (ppm) of populations screened against newer insecticides (2023-24)

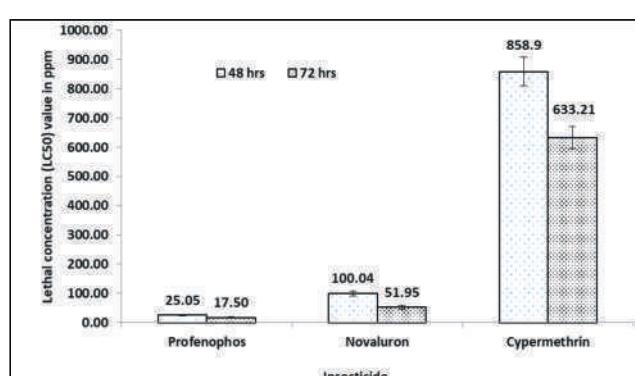



Fig 2.1.4. Mean lethal concentration (ppm) of populations screened against conventional insecticides (2021-22)

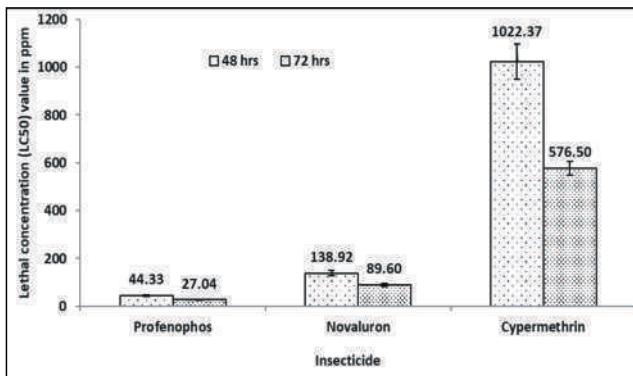



Fig 2.1.5. Mean lethal concentration (ppm) of populations screened against conventional insecticides (2022-23)

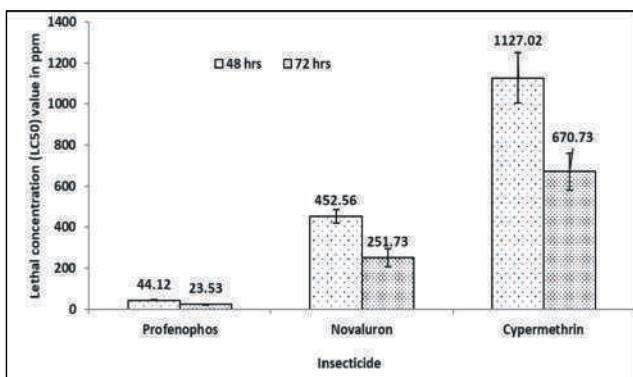



Fig 2.1.6. Mean lethal concentration (ppm) of populations screened against conventional insecticides (2023-24)

## 2.2 Project Name: Revisiting the ETLs and yield loss assessment for pink bollworm and boll rot in cotton

PI: Babasaheb B Fand

Co-PI: Vivek Shah, Dipak T Nagrale

**Importance of the study:** Pink bollworm (PBW) and boll rot (BR) cause significant yield loss in cotton due to deterioration of lint quality and seed damage. The present research was prompted by a paucity of precise methods for yield loss assessment due to damage caused by the two entities. Objectives of study were: i) To develop a reliable and robust method for yield loss assessment in cotton due to PBW and BR, ii) To study the effect of climate change on future invasiveness of PBW, and iii) To predict future trends of yield loss due to PBW by linking the phenology model with field-level damage.

### Salient findings

- A linear relationship was determined between pheromone trap catches (independent variable) and crop damage parameters (dependent variables: pink bollworm larvae per boll and percent green boll infestation) using the equation  $y = a + bx$ .
- The moth catch number (X) was estimated using inverse regression based on the regression equation parameters (a, b) and green boll damage or larvae per boll (Y), as shown in the equation:  $X = (Y - a) / b$ .
- Data from published Annual reports of AICRP on

Cotton for the period 2009-24 for four different cotton growing locations were used to validate the results.

- The regression model provided the best fit to the data ( $R^2 > 0.74$ ,  $p < 0.01$ ).
- The revised ETL was estimated to be 2.5 and 5.7 moths per trap per night for crop stages <120 DAS and >120 DAS, respectively, compared to the existing ETL of 8 moths per trap per night (Fig. 2.2.1; Table 2.2.1).

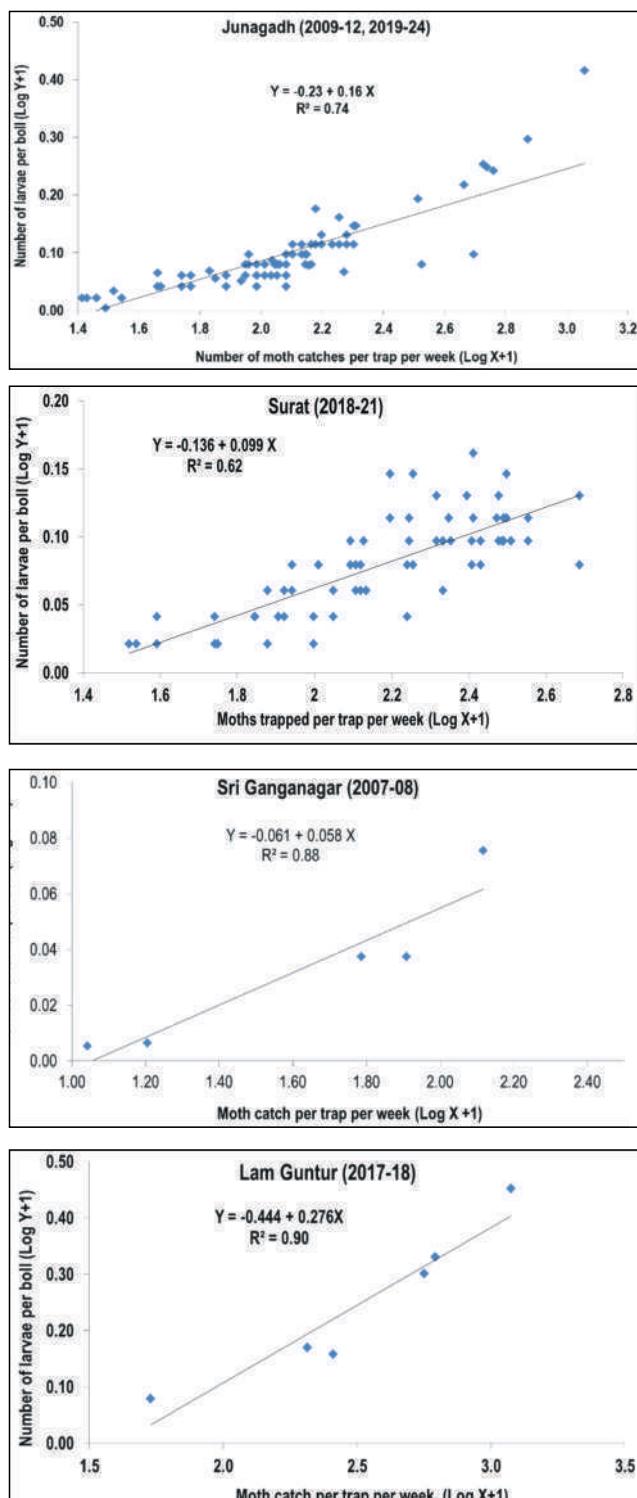



Figure 2.2.1. Multilocation validation of pink bollworm ETL based on moth trap catches

**Table 2.2.1. Pink bollworm ETLs based on moth trap catches estimated for four different cotton growing locations of India**

| ETL based on green boll infestation (%) | Mean weekly moths trapped (Nos.) |       |                |            | Mean daily moths trapped (Nos.) |       |                |            |
|-----------------------------------------|----------------------------------|-------|----------------|------------|---------------------------------|-------|----------------|------------|
|                                         | Junagadh                         | Surat | Sri Ganganagar | Lam Guntur | Junagadh                        | Surat | Sri Ganganagar | Lam Guntur |
| 5                                       | 39.1                             | 38.5  | 26.1           | 48.7       | 5.6                             | 5.5   | 3.7            | 7.0        |
| 6                                       | 41.5                             | 42.4  | 30.8           | 50.4       | 5.9                             | 6.1   | 2.4            | 7.2        |
| 7                                       | 42.1                             | 46.6  | 36.2           | 52.2       | 6.3                             | 6.7   | 5.2            | 7.5        |
| 8                                       | 46.7                             | 51.1  | 42.5           | 53.4       | 6.7                             | 7.3   | 6.1            | 7.7        |
| 9                                       | 49.5                             | 56.1  | 49.8           | 55.8       | 7.1                             | 8.0   | 7.1            | 8.0        |
| 10                                      | 52.4                             | 61.5  | 58.3           | 57.7       | 7.5                             | 8.8   | 8.3            | 8.2        |

**2.3 Project Name: Identification of Host Cues from Cotton (*Gossypium hirsutum*) to elicit behaviour of female Pink bollworm (*Pectinophora gossypiella*)**

**PI:** Rachna Pande

**Co-PI:** Pooja Verma

**Importance of the study:** This project aims to conduct a comprehensive volatile profiling of the cotton plant, analyzing different plant parts at various stages. The proposed method generates comparative data on volatiles between and within species. This study will enhance our understanding of chemical cues by evaluating the role of identified volatiles as host attractants. In addition, this project will identify the key volatiles that influence female pink bollworm behavior.

**Salient findings**

- For confirmation of protocol and volatile profile, the identification of compounds from different plant parts at different crop stages was repeated using Gas chromatography–mass spectrometry (GC-MS).
- Gossypium hirsutum*, *G. raimondii*, and *G. indicum* were the targeted plant species. Plant parts, viz., leaves (tender, fully developed), squares, buds, flowers (yellow and pink), and bolls, were collected and analyzed using GCMS. For the preparation of comparative volatile profiling, comparative tables were prepared under different categories, viz., plant part-wise comparison between the species, comparison of compounds within the species (comparison of different stages and individual stage at different days after sowing),.
- The potential fecundity of the pink bollworm was also calculated. In this experiment, 1 male + 1 female were included as treatment (3 replications), and potential fecundity was recorded. The average potential fecundity of the female pink bollworm was 148.33 eggs.
- Volatiles were also collected from whole potted plant (var. Suraj) using a customized air entrainment

system (BIOLABS, Hyderabad-India) for Y tube Olfactometer bioassay. The bioassay responses of mated female pink bollworm (*Pectinophora gossypiella*) moths toward plant volatiles collected on different days after sowing were recorded.

**2.4 Project Name: Development of EPF (*Beauveria bassiana* and *Metarhizium anisopliae*) and EPN based bio-formulation for sustainable management of pink bollworm and sucking pest complex in cotton**

**PI:** Shivaji Thube

**Co-PI:** Y.G. Prasad, G. T. Behere

**Importance of the study:** Cotton insect pests inflict severe damage to cotton crops, leading to significant yield losses and economic setbacks for farmers. In addition, the extensive use of chemical pesticides to control these pests has raised concerns about environmental pollution, human health hazards, and the development of pesticide-resistant populations. Given the urgency to find sustainable and eco-friendly alternatives to chemical pesticides, this project aims to address these important issues.

**Salient findings**

- Field evaluation of the *Metarhizium anisopliae* TMBMA1-based formulation demonstrated its effectiveness against aphids, with the lowest mean population recorded at 8.7 aphids per three leaves compared with 45 aphids per three leaves in the control (Fig. 2.4.1).
- The incidence of pink bollworm (PBW) was significantly lower in the TMBMA1-treated plots, with only 10% green boll damage, compared to 40% in the control (Fig. 2.4.2).
- Similarly, the jassid incidence was the lowest among all tested biopesticide, with a mean of 1.5 jassids per three leaves, compared with 2.4 jassids per three leaves in the control.
- The virulence of TMBMA1 against adult dusky cotton

bugs was evaluated under laboratory conditions. The highest mortality rate (99%) was observed at the highest fungal concentration ( $1 \times 10^{10}$  spores/ml), whereas the lowest mortality rate (13.33%) was recorded at the lowest concentration ( $1 \times 10^4$  spores/ml).

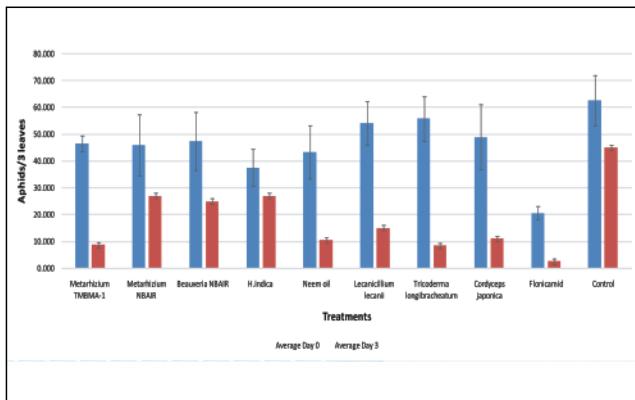



Figure 2.4.1. Bio-efficacy of biopesticides against cotton aphid

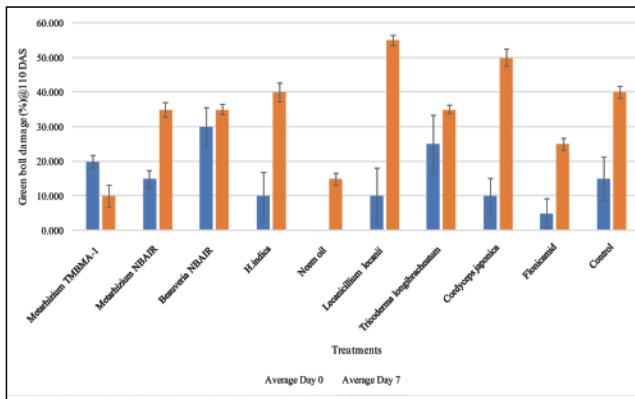



Figure 2.4.2. Bio-efficacy of biopesticides against pink bollworm at 110 days after sowing

## 2.5 Project Name: Insecticide Resistance Management: Dissemination of Pink Bollworm Management Strategies

PI: V. S. Nagrare

Co-PI: S.P. Gawande, B.B. Fand, D.T. Nagrale, S.S. Patil, K. Rameash, Rishi Kumar, Rachna Pande, Neelkanth Hiremani, S. K. Sain, J. H. Meshram, K. Shankarganesh, Shivaji Thube

**Importance of the study:** The widespread adoption of single-gene (Cry1Ac) Bt cotton hybrids from 2002, followed by dual-gene (Cry1Ac+Cry2Ab) Bollgard II hybrids from 2006, which now cover over 95% of India's cotton cultivation area, initially resulted in a significant shift in pest dynamics. Specifically, bollworm infestations were effectively suppressed, whereas sucking pests remained a concern. However, the initial success against cotton bollworm (*Helicoverpa armigera*), spotted bollworm (*Earias* spp.), and pink bollworm (*Pectinophora gossypiella*) was compromised by the emergence of pink bollworm resistance to Cry1Ac in Gujarat in 2008. This resistance subsequently led to

severe pink bollworm infestations across central and southern India from 2014, and in northern India from 2018. The resurgence of pink bollworm across all major cotton-growing regions of India poses a substantial threat to cotton production, affecting farmers' livelihoods and the national economy. Over the past 8-9 years, this pest has become a critical challenge, causing widespread damage and yield losses estimated at 20-30%. In contrast, cotton bollworm and spotted bollworm have been effectively controlled due to the broad host range and sustained toxicity of the Cry1Ac and Cry2Ab genes in Bollgard II cotton. Therefore, the primary objective of this project is to disseminate effective pink bollworm management strategies. This initiative was crucial for mitigating the immediate threat to cotton crops, ensuring the long-term sustainability of cotton farming, and safeguarding cotton farmers' economic well-being and the resilience of the Indian economy.

### Salient findings

- The project, "Insecticide Resistance Management: Dissemination of Pink Bollworm Management Strategies (IRM-PBW)," was implemented during 2023-24 season across 900 acres in 76 villages spanning 15 districts and 8 states: Maharashtra, Gujarat, Madhya Pradesh, Andhra Pradesh, Telangana, Karnataka, Tamil Nadu, and Haryana.
- The ICAR-Central Institute for Cotton Research (CICR) served as the nodal institute, collaborated with 10 State Agricultural Universities. This initiative employed a comprehensive pink bollworm management strategy that integrated cultural practices, biological controls, and need-based, judicious pesticide application.
- Outreach activities carried out in IRM villages were: Field visits-275, Farmer's trainings-26, Sensitization workshop to ginning mill owners and input dealers-6, Mobile text /voice Messages sent-205, Exhibitions arranged-8, Training/ workshop conducted-22, TV Programs-13, Radio talks-41, Farmers' queries replied-4763, Lectures delivered in trainings-79, Visit of farmer to station /personal contact-2521.
- IRM fields received an average of 5.82 sprays as compared to 8.37 sprays in non-IRM fields.
- IRM fields recorded average seed cotton yield of 1971 kg/ha compared to 1671 kg/ha in non-IRM fields, with a yield advantage of 18%. The accrued Benefit: Cost ratio was 1.91:1.
- The reduction in pesticide usage in IRM vs. non-IRM fields was 33.4% in terms of cost and 37.4% in terms of volume. The average pink bollworm infestation in North India was 36.2% in IRM fields and 68.6% in non-IRM fields. Similarly, pink bollworm infestations were 12.9% and 22.8% in central India and 13.9% and 21.3% in southern India in IRM and non-IRM fields, respectively. Overall, a 42.3% reduction in pink bollworm infestation was recorded in IRM fields over non-IRM fields during 2023-24.

## 2.6 Project Name: Crop pest surveillance and advisory project (CROPSAP) in Maharashtra

PI: V. S. Nagrare

Co-PI: B.B. Fand

**Importance of the study:** The state of Maharashtra, covering about one-third of India's total cotton cultivation, is crucial for cotton production and is often intercropped with soybean and pigeon pea. However, biotic stresses like pests and diseases pose threats to yields. To address this, the State Agriculture Department initiated the e-Crop pest surveillance and advisory project (CROPSAP) in 2009-10, employing Information and Communication Technology (ICT). In collaboration with ICAR Institutes, State Agriculture Universities, and government agencies, including NIPHM and MAIDC, the project focuses on major crops like Cotton, Soybean, Rice, pigeon pea, sugarcane, and chickpea. CROPSAP utilizes real-time monitoring and timely advisories, especially when pest populations exceed Economic Threshold Levels (ETL). ICAR-CICR plays a pivotal role, formulating Integrated Pest Management (IPM) strategies tailored for cotton and providing pest-specific advisory capsules. This project establishes a model for sustainable and technology-driven agricultural practices in Maharashtra, safeguarding crops, and fostering collaboration among various stakeholders.

### Salient findings

- Disseminated cotton pest management strategies through ICT tools as a stakeholders in CROPSAP 2023-24 in Maharashtra.
- Issued 38 growth-stage-wise advisories on pest and disease management. Conducted 1 Training/Lectures on pest and disease management, and 11 random field visits in 8 districts of Maharashtra.
- Analyzed pest infestation scenario. Pink bollworm infestation in green bolls was observed from the 31st standard week (SW) (30 July-05 Aug) in 3 villages and increased to 31 villages till 36 SW (03-09 Sep). Subsequently, infestation came down to 6 villages and crossed the ETL in 31 villages during 41 (08-14 Oct). Infestation crossed the ETL in more than 20 villages from 43 SW (22-28 Oct) to 51 SW (Dec 17-23) (Fig 2.6.1). The infestation increased from August to December. The month-wise villages that crossed ETL by pink bollworm were 39, 74, 104, 97 and 138 during August, September, October, November and December, respectively (Fig 2.6.2).
- The Amravati, Jalgaon, and Yavatmal districts showed maximum number of villages crossed ETL (Fig 2.6.3). Jassid infestation crossed ETL in 16 villages during the 31st SW (30 July-05 Aug) and was seen fluctuating till mid-September and subsequently, decreased thereafter. Highest number of villages where ETL crossed was recorded during August (49) followed by September (33), October (29), November (4) and December (5). Maximum no.

of villages crossing ETL by cotton jassid was seen in Amravati and Nanded. The overall whitefly and thrips data shows negligible infestation in most of the districts under observations.

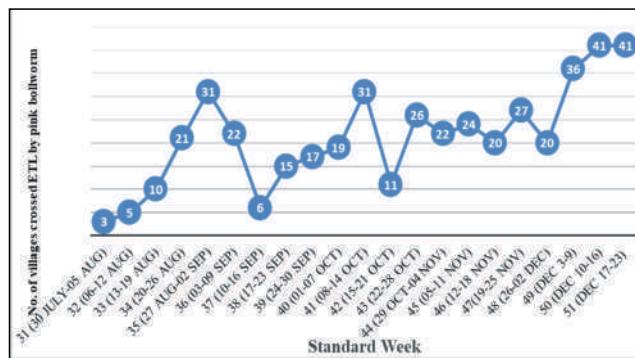



Fig 2.6.1. Pink bollworm infestation crossed ETL in a number of villages over the season 2023-24 in Maharashtra

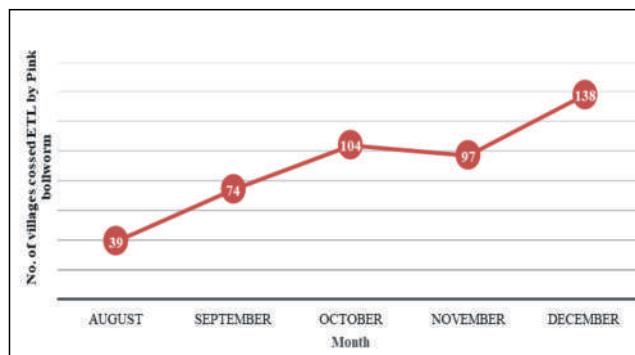



Fig 2.6.2. Month wise pink bollworm infestation crossed ETL in a number of villages in Maharashtra (2023-24) over the season

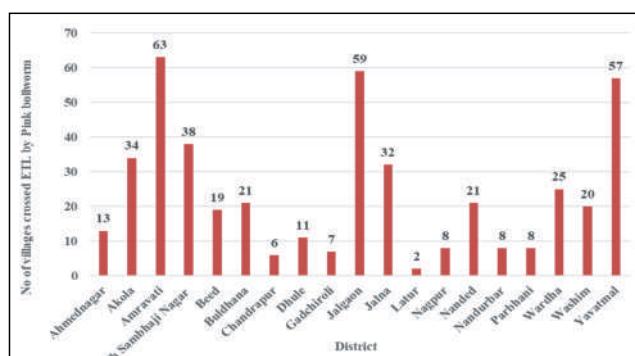



Fig 2.6.3. District wise Pink bollworm infestation crossed ETL in Maharashtra (2023-24) over the season

## 2.7 Project Name: Neonicotinoid and pyridine carboxamide insecticides resistance monitoring in cotton Jassid (*Amrasca biguttutla biguttutla* Ishida)

PI: V. S. Nagrare

Co-PI: Rishi Kumar, K. Shanakarganesh, Joy Das

**Importance of the study:** The resurgence of pink bollworm in three cotton-growing regions of India poses a significant threat to cotton cultivation and the nation's economy. The larvae of the pink bollworm are internal feeders, residing within the green bolls and consuming

developing seeds, rendering conventional chemical control methods less effective. To address this challenge, a range of pest management strategies are being explored, with particular attention to the potential of entomopathogen as biological control agents. These include bacteria, fungi, viruses, and entomopathogenic nematodes (EPNs). This project focuses on the comprehensive characterization of entomopathogen associated with pink bollworm larval infections across diverse geographic locations. The bioefficacy of these entomopathogens against pink bollworm populations was also investigated under laboratory and field conditions. By elucidating the traits and effectiveness of these natural control agents, this research project aims to contribute to the development of sustainable and environmental friendly approaches for managing pink bollworm infestations in cotton fields.

### Salient findings

- Seven technical-grade insecticides were used for bioassays. The mean LC50s at 24 and 48 hrs after exposure to the insecticides recorded were 195.0 and 8.4 ppm for Acetamiprid, 62.4 and 11.8 ppm for Clothianidin, 91.2 and 32.4 ppm for Fipronil, 92.2 and 47.9 ppm for Flonicamid, 117.5 and 62.1 ppm for Imidacloprid, 87.9 and 32.1 ppm for Thiamethoxam and 102.1 and 52.7 ppm for Dinotefuron, respectively.
- After 4 repeated sprays of Fipronil on cotton crop, resistance development in cotton jassid was 34 and 12-fold at 24 and 48 h respectively, while Flonicamid showed very low resistance at both 24 and 48 h after exposure. The relative susceptibility of cotton jassid across insecticides was recorded as Clothianidin > Thiamethoxam > Fipronil > Flonicamid > Dinotefuron > Imidacloprid > Acetamiprid at 24hrs after exposure. A survey on the pesticide use pattern in cotton was carried out at 24 locations of 18 districts across 3 cotton growing zones.
- At each location, 25 farmers were interviewed; thus, data from 600 farmers were collected. Farmers applied average 6.11, 5.87, 6.72, and 6.09 pesticide sprays in North India, Central India, South India and overall, India for the control of both sucking pests and bollworms. Pesticide (insecticide+ Fungicide) consumption was 839, 1417, 2123, and 1494 g a.i/ha in North India, Central India, South India and overall, India, respectively. The share of insecticide was recorded 89% while of fungicide was 11%.

### 2.8 Project Name: Studies on target leaf spot of cotton caused by *Corynespora cassiicola*

**PI:** Shailesh P. Gawande

**Co-PI:** S. K. Sain, Babasaheb B. Fand, Rakesh Kumar

**Importance of the study:** This study aims to gather crucial data on Target Leaf Spot, an emerging cotton disease, for location-specific management, which is currently lacking. Comprehensive information on cotton distribution across Indian cotton acreage, disease

onset, and diversity is essential. Understanding these factors will help analyze disease progression and its potential impact on yield, thereby aiding in better disease control and management strategies.

### Salient findings

#### Classification and detection of the cassiicolin gene cascade in the studied isolates

A survey of 22 districts in eight Indian states assessed the diversity of *Corynespora cassiicola* isolates from diseased cotton leaves. The study analyzed the cassiicolin-encoding gene in 48 isolates using PCR with primers targeting all known Cas sequences (Fig.2.8.1). Isolates were cultured in PDA broth, and conidia were inoculated onto the susceptible cotton cultivar Yugank-Bt. Symptoms appeared five days post-inoculation (Fig.2.8.2). The cassiicolin gene, which encodes host-selective toxins (HSTs), was found in 79% of the isolates, with Cas5 in 65%, which correlates with higher virulence. Findings highlight cassiicolin's role in disease severity.

#### Regression analysis using a Logistic Model for estimation of Disease progression for Target Leaf Spot

A field experiment using a split-plot design with two hybrids, four replications, and varying fungicide applications showed that Ajeet-155 (BG-II) had a lower disease incidence than the Crystal First Class, indicating resistance (Fig.2.8.3). Disease peaked at 85–120 DAS, highlighting a critical window for management. Increasing the number of fungicidal sprays reduced disease incidence, with three most sprays, being most effective. Findings underscore the importance of resistant cultivars and optimized spray schedules for sustainable cotton disease control.

#### Field evaluation of label-claimed fungicides and bio agents against Target leaf spot

Table 2.8.1 summarizes a cotton field experiment on disease incidence (PDI), , and yield. T10 (water spray) had the highest PDI (16.93) while T9 (culture consortia) had the lowest PDI (2.47), with 73.6% disease reduction. T1 yielded showed highest seed cotton yield (28.88 q/ha), highlighting the impact of treatments on disease control and productivity.

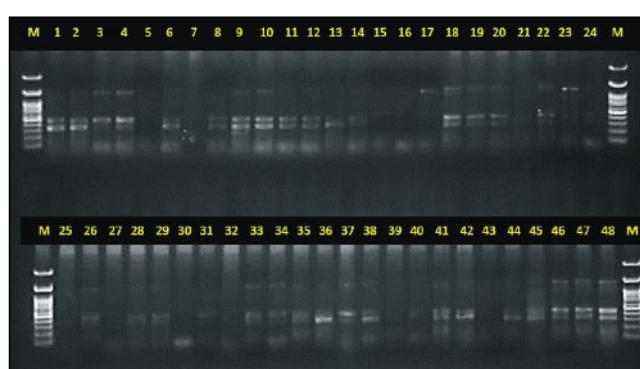



Fig.2.8.1 PCR amplification of *Corynespora* samples from different geographic locations using Cas 5 cascade gene where M-Marker 100bp, Samples 1-48= *Corynespora* isolates from North, Central and South India



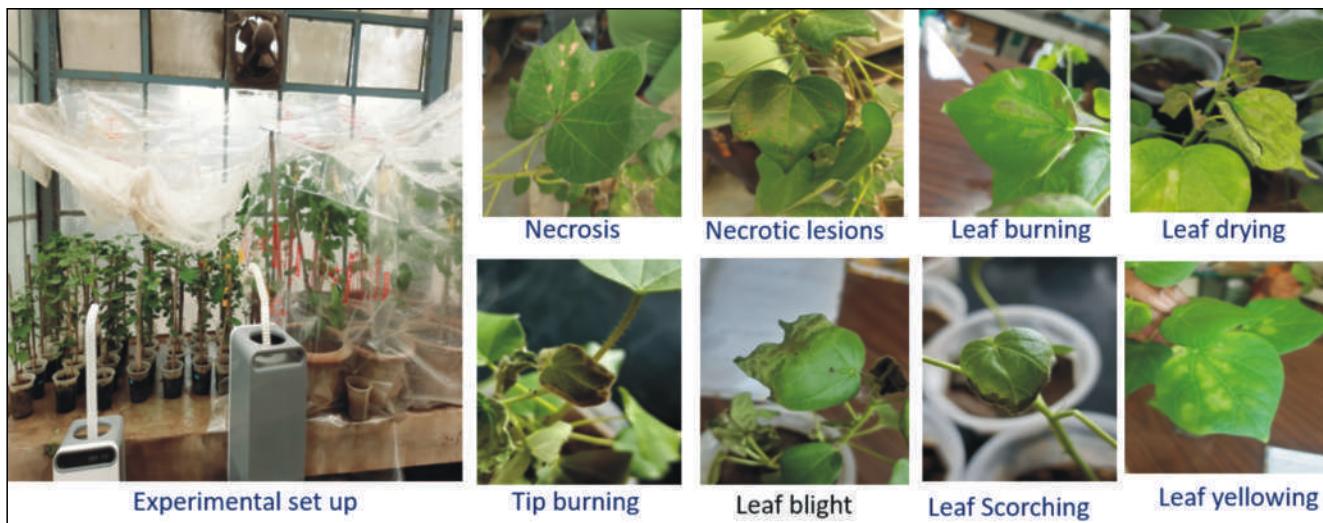



Fig.2.8.2. Symptoms appeared on the susceptible cultivar (Yugank Bt) five days after Inoculation with conidial suspensions from different *Corynespora cassiicola* isolates

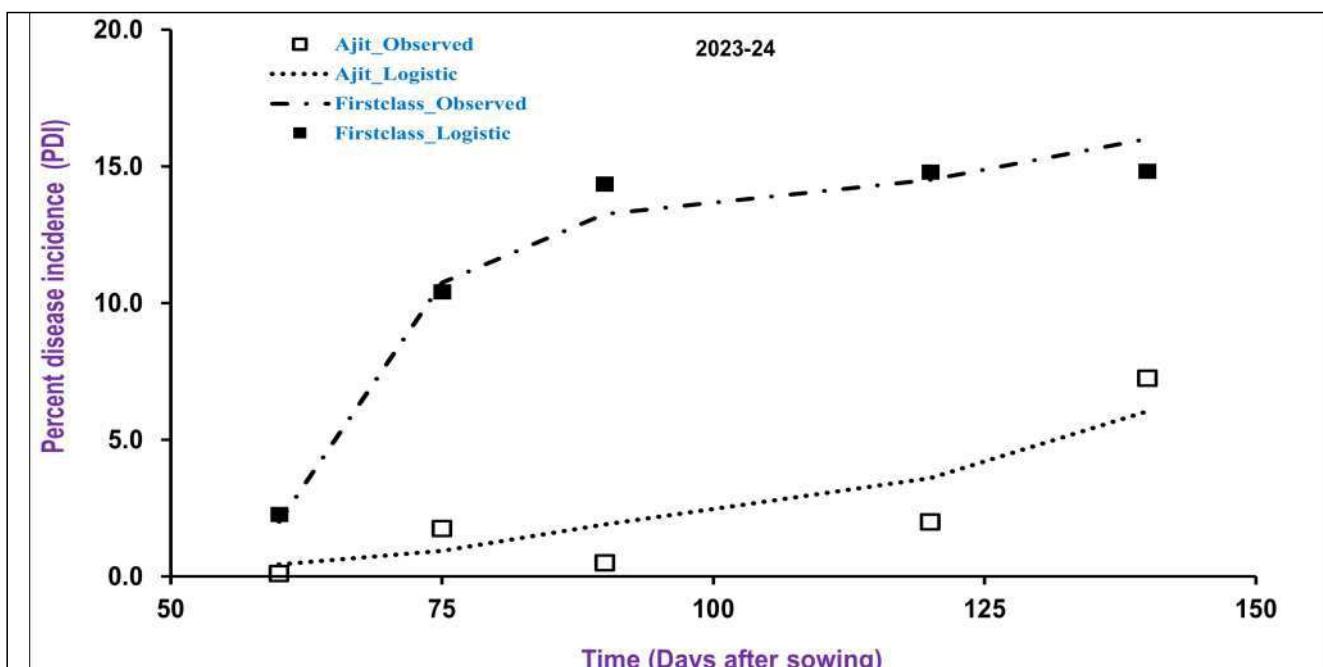



Fig.2.8.3 The Percent Disease Incidence (PDI) over Time (Days After Sowing - DAS) for two cotton BG-II hybrids: Ajeet-155 and Crystal First Class. The graph compares observed disease incidence with a logistic model-based prediction.

Table 2.8.1. Field evaluation of label claim fungicides and bio agents against Target leaf spot.

| Treatments                                          | Avg. PDI at 110 DAS | % Reduction over control | Avg. Yield q/ha |
|-----------------------------------------------------|---------------------|--------------------------|-----------------|
| T1-Fluxapyroxad 167 g/l + Pyraclostrobin 333 g/l SC | 7.00                | 58.65                    | 28.88           |
| T-2 Carbendazim 50 WP                               | 6.10                | 63.97                    | 26.24           |
| T3-Propiconazole 25% EC                             | 5.13                | 69.70                    | 26.14           |
| T4-Propineb70%WP                                    | 5.43                | 67.93                    | 28.48           |
| T5-Trichoderma asperellum 1% WP                     | 9.90                | 41.52                    | 26.23           |
| T6-Trichoderma longibrachiatum 1% WP                | 5.33                | 68.52                    | 27.53           |
| T7-Bacillus tequellencis 1% WP                      | 7.90                | 53.34                    | 27.50           |
| T8- Trichoderma harzianum 1% WP                     | 6.77                | 60.01                    | 28.09           |
| T9- Consortia of all the cultures 1% WP             | 2.47                | 73.60                    | 28.64           |

| Treatments                 | Avg. PDI at 110 DAS | % Reduction over control | Avg. Yield q/ha |
|----------------------------|---------------------|--------------------------|-----------------|
| T10- Control (Water spray) | 16.93               | 0.00                     | 23.74           |
| C.D.                       | 2.041               |                          | N/A             |
| SE(m)                      | 0.682               |                          | 1.801           |

## 2.9. Project Name: Studies on boll rot in cotton- Etiology and Management

PI: Dipak T. Nagrale

Co-PI: Babasaheb B. Fand

**Importance of the study:** The boll rot disease complex in cotton has emerged as a significant threat in major cotton-growing regions, impacting both fiber and seed quality while reducing overall seed cotton yield. A diverse group of pathogens contribute to the disease, varying across agroclimatic zones and cultivation practices. With climate change intensifying the problems, addressing boll rot has become increasingly challenging. Understanding etiological factors, insect-pathogen interactions, and effective management strategies are crucial for sustainable cotton production and fibre quality.

### Salient findings

- The multilocation survey, sampling, and diagnostics of boll rot disease complex were performed from northern, central and southern zones of India.
- The detailed polyphasic characterization, symptomatology, and pathogenicity of the BG-II cotton hybrid and non-Bt variety were performed for the isolated pathogens associated with the boll rot disease complex (Fig. 2.9.1 and 2.9.2).
- Among the pathogens, *Pantoea* spp., *Xanthomonas citri* pv. *malvacearum*, *Enterobacter cloacae*, *Fusarium* spp., *Alternaria macrospora*, *Corynespora cassiicola*, *Lasiodiplodia theobromae*, *Colletotrichum gossypii*, etc. were dominant across zones.
- Erect to semi-erect plant type, medium height, sucking pests tolerant, and medium crop duration for BG-II hybrids, along with timely prophylactic sprays with suitable and better field drainage condition were observed with less severity of disease complex in medium to medium-heavy soil condition at farmers' fields.
- Vectoring of the bacterial boll rot pathogen *Pantoea dispersa* in healthy green bolls were observed using a sucking pest (Thrips sp.), thereby intensifying internal bacterial boll rot disease.
- In late season stages, red cotton bugs and brown/green stink bugs carries bacterial pathogens (*Pantoea* spp.) in the proboscis, which can stain and deform seeds and reduce lint quality in developing and opening bolls.

- Thiram 37.5% + Carboxin 37.5% WS@ 0.35% was the best seed treatment fungicide for managing bacterial and fungal boll rot pathogens under in vitro and field conditions.
- Under field conditions, Carbendazim 12% + Mancozeb 63% WP @0.25%, Carbendazim 50 WP (0.04%), Propiconazole 25 EC (0.1%), Propineb 70 WP (0.25%), and Copper oxychloride 50 WG (0.25%) were comparatively effective against the boll rot disease complex.

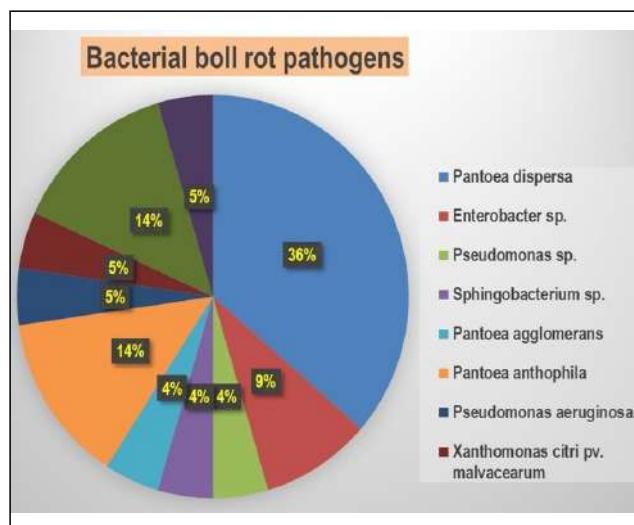



Fig. 2.9.1 Bacterial boll rot pathogens from cotton growing zones

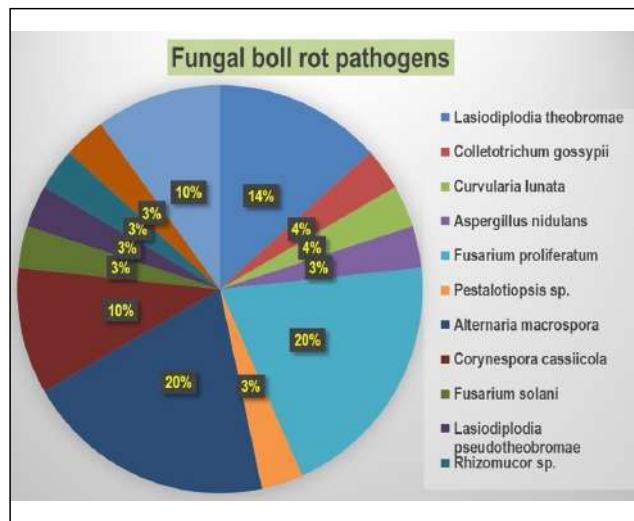



Fig. 2.9.2 Fungal boll rot pathogens from cotton growing zones

## 2.10. Project Name: Studies on grey mildew disease of cotton caused by *Ramularia areola*

PI: Neelakanth S. Hiremani

Co-PI: P. Valarmathi

**Importance of the study:** Grey mildew disease was first reported in upland cotton, and it then spread to all cultivated cotton species. The constant shift in this disease over the years may be due to the variability existing among the pathogen. Very limited information is available regarding the pathogenic and genetic variability of *R. areola*, making it difficult to manage either through resistant cultivars or through fungicides.

### Salient findings

- The pathogenicity of *Ramularia areola* was tested on LRA-5166 by spraying spore suspension, prepared by scraping conidia from diseased leaves. Optimum leaf wetness and humidity were maintained after spraying. Small necrotic spots were noticed on the leaves.
- Cross-inoculation of *Ramularia areola* on different

cotton species was performed in a glass house and in the field. In the field experiment, 10 different cotton hybrids were grown, and PA-810 was used as an infector row/border crop. We found that the severity of grey mildew disease on different hybrids was less.

- Evaluation of bioagents and fungicides for the management of grey mildew disease in the field: A second-year field trial was conducted to identify the best management approach against Grey mildew disease. Bt hybrid RCH-797 was sown along with two infector rows- PA-740 and PA-810. The severity of grey mildew disease was less during the season. Maximum PDI was seen in the control (13.3%), followed by T1 (Foliar spray of *Trichoderma harzianum* @ 90 and 110 DAS i.e., 11.73%) and T2 (11.47%). The percent disease reduction over the control was highest in T5 (Foliar spray of combi product (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 90 and 110 DAS), followed by T6 (Foliar spray of *T. harzianum* @ 90 DAS + Propineb @110 DAS). (Fig. 2.10.1).

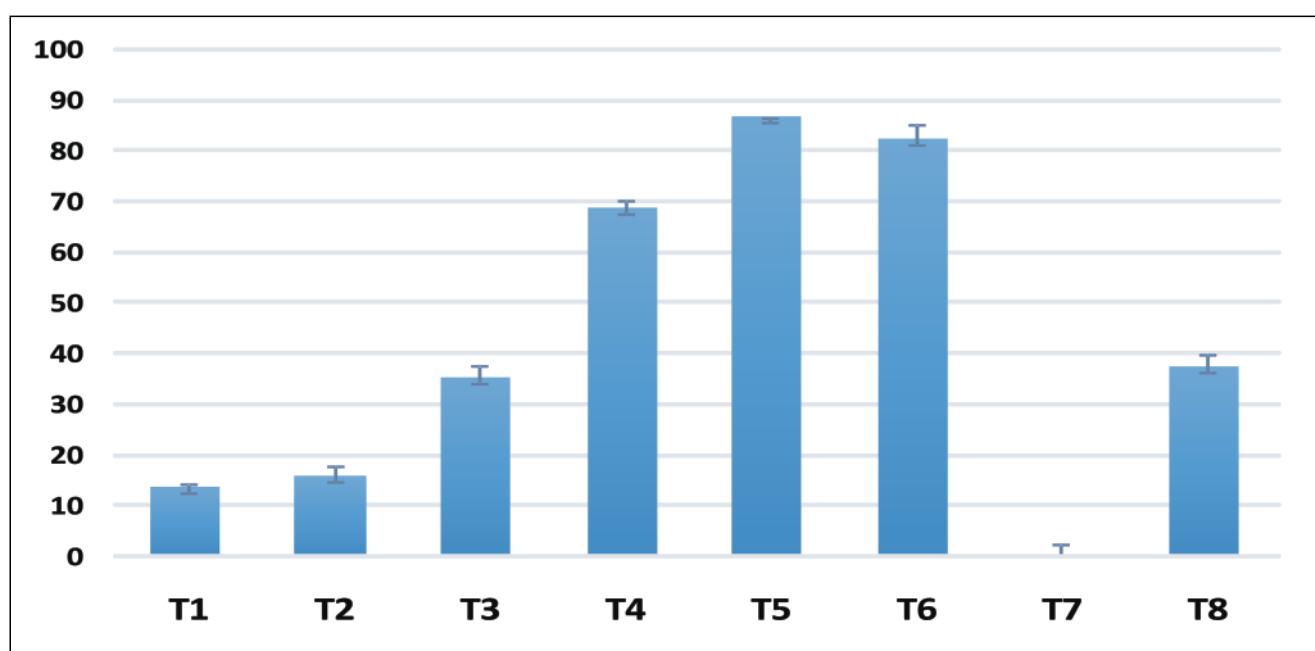



Fig. 2.10.1. Percent disease reduction of Grey mildew disease in different treatments over control at 120 DAS, where T1= Foliar spray of *Trichoderma harzianum* @ 90 and 110 DAS, T2= Foliar spray of *Pseudomonas fluorescens* @ 90 and 110 DAS, T3= (T1 + T2), T4= Foliar spray of Kresoxim methyl @ 90 and 110 DAS, T5= Foliar spray of combi product Azoxystrobin 18.2% + Difenoconazole 11.4% @ 90 and 110 DAS, T6= Foliar spray of *T. harzianum* @ 90 DAS and Propineb @110 DAS, T7= Untreated control and T8= Foliar spray of Kresoxim methyl @110 DAS.

## 2.11 Project Name: Development of AI enabled pheromone trap for lepidopteran pests and Multi-fin glue trap for sucking pests on cotton

PI: K. Rameash

Co-PI: M. Sabesh

**Importance of the study:** Pheromone traps assist in monitoring the population of key lepidopterous pests on cotton viz., *Spodoptera litura* and *Helicoverpa armigera*, that helps to decide the appropriate time for insecticide

application. However, conventional traps have many limitations; as the data collection is labour-intensive, error-prone, costly, and inefficient for large-scale monitoring. Manual surveys fail to capture real-time pest dynamics over a wider area, leading to delayed and ineffective pest management. To circumvent the limitations of conventional pheromone traps, research has been undertaken to develop an artificial intelligence (AI) enabled pheromone trap to transmit the count of insect catches directly to the user with additional

information like location of the trap and weather data. The AI-enabled pheromone trap addresses these challenges, offering a more efficient and precise solution for cotton pest monitoring.

Sticky traps, that leverage insect color preferences have for long been used for pest monitoring and management in cotton fields. Yellow sticky traps are commonly used to monitor sucking pests such as jassids, aphids, and whiteflies, whereas blue sticky traps are effective for thrips monitoring and their control. This research aimed to develop a multi-colored glue-fin trap designed to monitor and manage multiple cotton pests—including jassids, thrips, whiteflies, aphids, and pink bollworm—using a single, integrated trapping system.

#### Salient findings

A real-time insect detection system based on YOLO Machine learning algorithm was developed to detect and count the trapped adult moths of *Spodoptera litura* and *Helicoverpa armigera*. The fabricated AI smart trap was field tested during 2023-24 for monitoring , and it was found that the trained algorithm achieved a detection accuracy of 92.3% for *S. litura* and 89.1% for *H. armigera* (Fig.2.11.1).

Two field experiments were conducted during 2023-24 to evaluate the multi coloured glue-fin trap for the monitoring and management of jassids, thrips, whitefly aphids, and pink bollworm adults on cotton (T1. yellow + blue + white + gossyplure; T2. yellow + blue + green+ gossyplure; T3. yellow + blue + red+ gossyplure; T4. fluorescent yellow + fl. green + fl. white + gossyplure; T4. fluorescent yellow + fl. blue + fl. green + gossyplure; T6. fluorescent yellow + fl. blue + fl. red + gossyplure; T7. yellow + yellow + yellow + gossyplure; T8. yellow cylinder trap; T9. standard funnel trap with gossyplure) in RBD with three replications. The mean trap catch data showed that yellow + blue + white + gossyplure combination recorded maximum trap catch of sucking pests viz., jassids, aphids, and thrips, and pink bollworm adults. Occurrence of whiteflies was low throughout the season. There were no differences among the colour traps in attracting pink bollworm adults. However, the colour sticky trap catches were significantly low (0.7-16.3/week) than the catches in standard funnel trap (21.2/week).



Figure 2.11.1: Detection and counting of *Spodoptera litura* and *Helicoverpa armigera* by machine learning algorithm

#### 2.12 Project Name: Biology and holistic management strategies for emerging pest tea mosquito bug (*Helopeltis* sp.) in cotton

PI: M. Amutha

**Importance of the study:** Tea mosquito bug (TMB) *Helopeltis* sp. has emerged as a significant pest of cotton causing severe damage to the crop. The impact of *H. theivora* on cotton productivity necessitates detailed studies on the efficacy of various insecticide groups used for its control. This information is crucial for recommending effective chemical control measures for cotton ecosystem. Development of an efficient damage scoring system is crucial for accurately assessing the level of damage caused by *Helopeltis* sp. and is essential for timely pest management decision.

#### Salient findings

- The population dynamics of the tea mosquito bug (TMB) (*Helopeltis* sp.) indicated that the incidence of TMB began in December and persisted until March. The occurrence during 2023-24 was lower than previous three years. Temperature exhibited a highly significant negative correlation with the incidence of TMB. Furthermore, sunshine hours and solar radiation showed negative correlation with TMB population levels, while relative humidity, rainfall, and number of rainy days demonstrated positive correlations with pest incidence (Fig 2.12.1 and Table 2.12.1).

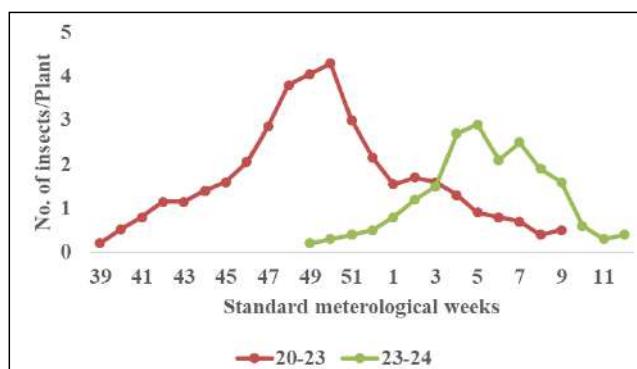



Fig 2.12.1. Population dynamics of *H. theivora* in cotton

- A total of eleven insecticides were tested in field trials to evaluate their efficacy against the tea mosquito bug (*Helopeltis* sp.). Among the tested insecticides, Thiamethoxam 12.60% + Lambda-cyhalothrin 9.50% ZC and Dinotefuran 20 SG demonstrated the highest effectiveness, achieving a 92% corrected reduction in the number of insects per plant (Fig. 2.12.2).
- The order of efficacy of insecticides was classified as follows: Thiamethoxam + Lambda-cyhalothrin > Dinotefuran > Bifenthrin > Lambda-cyhalothrin > Cypermethrin > Fibronil > Thiamethoxam > Thiacloprid > Flonicamide > Imidacloprid > Azadirachtin.
- Developed a comprehensive whole plant-based scoring system to assess the damage caused by the

tea mosquito bug in cotton, replacing the method of evaluating damage separately on shoots and bolls (Table 2.12.2).

- In total, 25 alternate hosts were recorded for tea mosquito bug during the off season.

**Table 2.12.1. Correlation between *H. theivora* incidence and weather factors**

| Max. Temp | Min. Temp | RH Morn | RH Even | Rainfall | Sunshine hours |
|-----------|-----------|---------|---------|----------|----------------|
| -0.382*   | -1.157*   | -0.085  | 0.048   | 0.004    | 0.154          |



Fig 2.12.2. Evaluation of efficacy of different insecticides against *H. theivora* under field conditions

**Table 2.12.2. Whole plant-based damage scoring system for *H. theivora* damage**

| Scale | Damage Symptoms                                                                               |                                                                 |
|-------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|       | Shoot                                                                                         | Boll                                                            |
| 0     | No damage                                                                                     | No damage                                                       |
| 1     | 1-10 necrotic lesions in stem or 25% damage in leaf area                                      | Few lesions on 10% of bolls                                     |
| 2     | 10-20 necrotic lesions in stem or 50% damage in leaf surface area                             | 1/4 of the surface area canker in 25% of bolls                  |
| 3     | damage in leaf area                                                                           | 1/2 of the surface area canker in 50% of bolls                  |
| 4     | Lesions confluent or bunching or drying of affected shoots or more than 75% leaf area damaged | 3/4 or more of the boll surface cankered in more than 50% bolls |

**2.13 Project Name: Development of Semio-chemical based attractants for sustainable management of cotton stem weevil *Pempherulus affinis* (Faust) Curculionidae: Coleoptera)**

**PI:** K. Shankarganesh

**Importance of the study:** Cotton stem weevil is one of the key insect pests in south India especially in Tamil Nadu. If infestation occurs on 12-15 days of seedlings, it

can cause up to 90% of mortality. Control with insecticides targeted at the adult stage is becoming increasingly difficult as more effective insecticides were banned and non-availability or limited availability of new chemistry insecticides. Farmers struggled to control this pest because of the invisibility of its life stages. Susceptibility of the most promising Bt and non-Bt varieties to stem weevils is unknown. In addition, the

existing management strategies were ineffective in controlling this pest. Studies on the influence of plant-derived volatiles on the behavior of stem weevils in cotton were less studied. The initial phase of stem weevil infestation is associated with the volatiles emitted by cotton seedlings that attract this pest. In susceptible varieties, this phenomenon leads to the death of young seedlings. Hence, an understanding of host plant interactions mediated by semio-chemicals would offer clues for deciphering the weak links in the biology of stem weevil. It is imperative to study the chemo profiling of resistant and susceptible genotypes/varieties/hybrids (Bt and non-Bt) against stem weevil. Hence, the characterization of semio-chemicals can help identifying attractants and repellents for stem weevil infestation. Based on the differential profiles of semio-chemicals, promising compounds can be synthesized and validated for their efficacy on the behavior of stem weevils. The outcome of this study will help develop chemo lures for managing stem weevils.

### Salient findings

#### Comparison of volatile profiles between 10-day-old cotton plants with and without herbivore interaction

##### Plants vs. plant with insects

The compounds in this group (13) appeared across both plants and plants with insect conditions, indicating that they may serve as baseline chemicals present regardless of insect interaction. This group includes a mix of hydrocarbons (e.g., Dodecane, Undecane), siloxanes (e.g., Cyclotrisiloxane, hexamethyl-, Cyclohexasiloxane, dodecamethyl-), and aromatic compounds (e.g., o-Xylene, 4-(2-Aminoethyl) benzenesulfonyl fluoride). The presence of these baseline compounds suggests roles in the structural or metabolic processes of plant that are unaffected by insect presence.

#### Comparison of volatile profiles between 20-day-old cotton plants with and without herbivore interaction

##### Plants and plants with insect

The plant and plant with insect groups consistently contains nine compounds under both plant-only and plant-with-insect conditions. This suggests that these compounds play essential baseline roles in plant's chemistry, likely contributing to general defense or resilience. Notable compounds in this group include non-anal, an aldehyde commonly involved in plant signaling that may help deter herbivores or attract beneficial insects for natural pest control. Disulfide, dimethyl, a sulfur compound, is also present and is known for its strong defensive properties against pests. Benzene, a simple aromatic hydrocarbon, has structural or mild defensive functions, enhancing plant stability and deterring herbivores. Several volatile compounds identified in this analysis function as attractants for cotton stem weevil adults. These attractants were confirmed in controlled laboratory experiments using a Y-arm olfactometer, and their behavioral effects were

validated. Compound C emerged as a key component that was consistently observed under multiple conditions and experiments. Its significant presence in both plant-insect and insect-only treatments suggests a critical role in mediating insect-plant interactions.

#### Cotton stem weevil behavioral study

The responses of cotton stem weevil adults to cotton reference pheromone compounds were determined using an olfactometer. The reference pheromone compounds viz., Compound C and Compound B showed a positive response to adult weevil at 2000 ppm among the 10 tested compounds. The significance level was  $P < 0.04$ . There is a highly significant difference between the two sample means. Reference compounds viz., A, B, C, and E showed positive responses to adult weevil at 2000 ppm among the 10 tested compounds. Compounds C and B were highly effective attractants against cotton stem weevil adults.

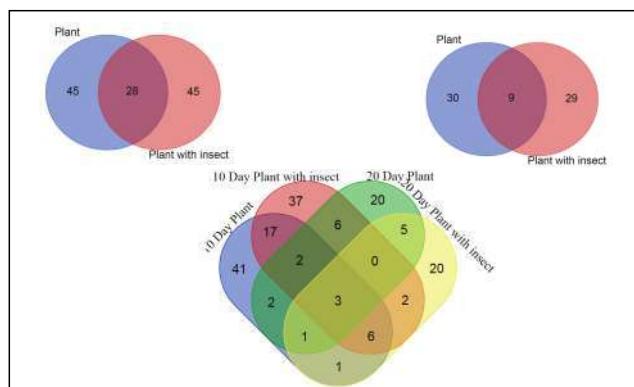



Fig 2.13.1. Comparison of volatile profiles between and 20-day-old cotton plants with and without herbivore interaction

#### 2.14 Project Name: Survey, molecular characterization, vector transmission and exploiting host plant resistance for tobacco streak virus (TSV) in cotton

PI: A. Sampathkumar

Co-PIs: P. Valarmathi, Shailesh P. Gawande, Shivaji Thube, Sivaramakrishna (RARS, Nandyal – ANGRAU)

**Importance of the study:** Cotton necrosis disease caused by tobacco streak virus (TSV) is an emerging threat in India. The initial symptom include chlorotic lesions and purplish brown spots, followed by necrosis. In the advanced stages of drying of squares, stems and stunting of plants are observed. The tobacco streak virus (TSV) belongs to the genus *ilarvirus* of the family *bromoviridae* and is a multipartite, single-stranded, positive-sense, RNA virus. The host range comprises 200 plant species, including agricultural, horticultural crops, and weeds. In cotton, tobacco streak virus causes a maximum of 62.7% yield loss (Rageshwari et al., 2017). The TSV incidence of cotton is increasing day by day specifically in the southern parts of India in the last few years. During 2022-23 crop season, the Kurnool and Nandyal districts of Andhra Pradesh witnessed a

severe disease incidence ranging from 4.5 to 44.0 PDI.

#### Salient findings

- A survey on TSV in the Kurnool (10 mandals, 17 villages), Nandyal (2 mandals, 7 villages) and Anantapur (1 mandal, 2 villages) districts of Andhra Pradesh was carried out. Kurnool had a disease incidence of 4.0 – 42.0 % disease incidence (average 10.26%). Three fields had >20% incidence (Fig. 2.14.1 & 2.14.2), and three fields were disease-free. Madhavaram village in Nandavaram mandal recorded 42.0% TSV incidence in Khiladi and Ranadheera BG II hybrids. All four stages of TSV recorded (Grade I to IV) and mostly Grade II and III.
- In Nandyal, 4.0–12.0% incidence (average 7.14%) was recorded, including sunflower necrosis (Fig. 2.14.3) in the RARS farm. Anantapur recorded 0.0–3.0% incidence. Cotton area was reduced in both districts and replaced by Bhendi, Red gram, Tobacco, Chilli, Onion, Sunflower, Maize and Soybean.
- Swift (Rasi Seeds), US 7067 (Seed Works), and Ankur 888 were found to be tolerant to TSV, as per the farmers' and seed distributors. Less thrips population was observed in the visited fields.
- The incidence of TSV was higher in rainfed cotton

compared irrigated fields wherein, most fields were surrounded by other crops like chilli, onion, soybean, red gram, and sunflower, which were infected by TSV. Bunds of the fields were filled with weeds - parthenium and others - a source of inoculum for TSV. Due to delayed monsoon, lot of variations were observed in the sowing date. Many farmers took up late sowing with a reduced area at the end of July 2023.

- Cotton fields were also visited in Adilabad (0.5 -1.0%), Nirmal (0.5 -1.0%), Warangal (3.0 to 19.0%), Siddipet (4.0 to 12.0%), Ranga Reddy (9.0 to 14.0%), and Medak (4.0 to 12.0%) districts of Telangana.
- Coimbatore district had an incidence of 0.5%-40.0% (Fig. 2.14.4) (average 11.0%). RCH659 BGII hybrid had the highest incidence of 40.0% with all types of symptoms (Fig. 2.14.5).
- Sixty-five cotton cultivars were screened under field conditions against TSV in CICR RS Coimbatore (Fig.2.14.6) and RARS, Nandyal. In Coimbatore, TSV varied from 1.25 to 8.33 PDI among 18 cultivars. In Nandyal, TSV was not recorded in cultivars. However, entries like KCH707, SMP1836, CICR 23 and 25 Bt were found to be tolerant to thrips as well as other sucking pests.



Fig.2.14.1. TSV Symptoms (purple ring spot, mosaic observed during survey in Kurnool district, Andhra Pradesh



Fig. 2.14.2. TSV Symptoms (mosaic,purple ring spot and necrosis observed during survey in Kurnool district, Andhra Pradesh



Fig. 2.14.3. TSV Symptoms – Sunflower necrosis observed in RARS, Nandyal



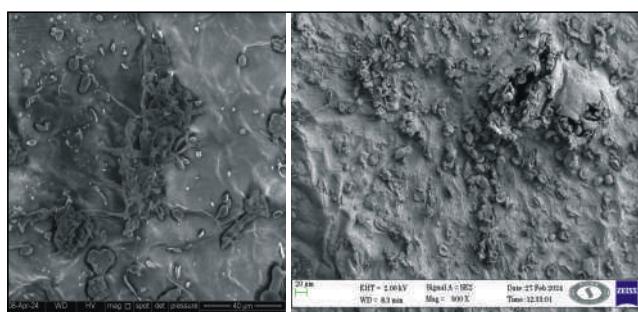

Fig. 2.14.4. TSV Symptoms (mosaic, purple spot, necrosis observed in New Area Farm, CICR, RS, Coimbatore



Fig. 2.14.5 TSV Symptoms (tip and square drying) observed in New Area Farm, CICR, RS, Coimbatore



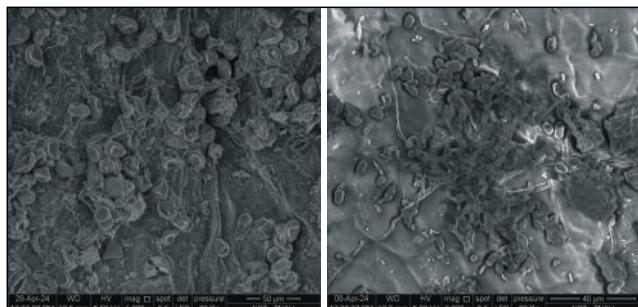
Fig. 2.14.6. Screening of cotton cultivars against TSV under field conditions at, CICR, RS, Coimbatore


## 2.15 Project Name: Studies on rust disease of cotton caused by *Phakopsora gossypii* and cotton necrosis disease caused by TSV and its management

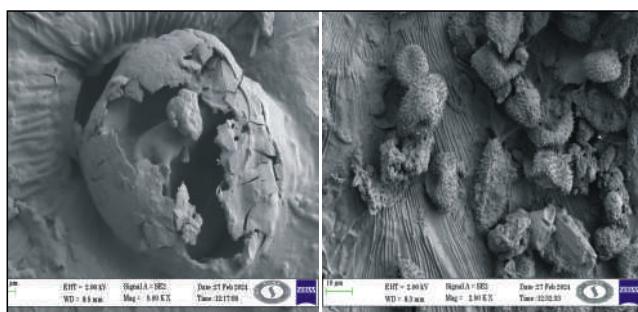
PI: Dr. P. Valarmathi

**Importance of the study:** *Phakopsora gossypii*, an emerging cotton disease, has led to substantial yield losses. Considering the current importance of rust disease and the need to obtain additional basic information about its causal agent for the development of new and effective control strategies, this study aimed to determine the infection process of *P. gossypii* in cotton leaves using scanning electron microscopy (SEM).

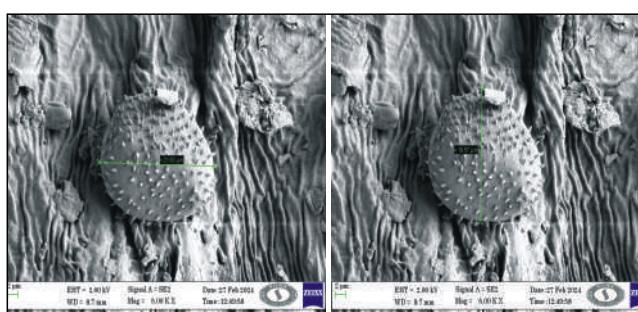
### Salient findings:


SEM microscopic evidence of the infection process of *Phakopsora gossypii* in the leaves of cotton plants showed that at 42 hai (hours after inoculation), the uredospores germinated, producing a germ tube and an appressorium, a pivotal event that might directly allow the fungus to penetrate the leaf cuticle. At 20 dai (days after inoculation), closed uredia containing uredospores were observed on the abaxial leaf surface (Fig.2.15.1 to Fig.2.15.4). The findings of this study suggest that managing rust through fungicides should be initiated within 20 days after infection, as after this period, the uredia begin to open, releasing airborne uredospores which can then spread to healthy cotton leaves. *P. gossypii* forms asexual uredospores on short stalks within a uredium 5-8 days after inoculation on colonized leaves. Germinating uredospores (Sp) produce a single germ tube (Gt) under suitable conditions terminated with the formation of a globose, appressorium (App), and continue into a penetration hypha (Penh), which traverses epidermal cells (Epi). In the intercellular space of the mesophyll, a primary hypha (Ph) is separated from the penetration hypha by a septum and then branches into several secondary hyphae (Sh).




**Fig. 2.15.1 Scanning electron micrographs of the abaxial leaf surface of cotton plants at 42 h (A) after inoculation with *Phakopsora gossypii*. (A) A uredospore (arrow) germinated, formed a germ tube (arrowhead) and produced an appressorium on the cotton leaf surface (arrows). Uredospores (us), Germ tube (gt), Abaxial epidermis (abep), appressorium (app), stomata (st). Scale bars = 40 μm.**

Finally, the pathogen invades a mesophyll cell (Meso), forming the first haustorium (Hau) to establish in the host interaction. Field evaluation for TSV in 14 resistant lines


of *G. barbadense*: Sowing of 14 resistance lines- ICB 84, 85, 86, 87, 90, 91, 122, 124, 125, 127, 153, 161, 162, 163, Suvin, and ICB 260S were - carried out. The in situ Parthenium population was maintained to monitor the occurrence of TSV disease symptoms.



**Fig. 2.15.2 Scanning electron micrographs of the abaxial leaf surface of cotton plants at 35 days after inoculation with *Phakopsora gossypii*.** Fungal hyphae grew abundantly (arrowheads) in the mesophyll next to the uredia. Arrows indicate uredospores in the uredia. Scale bars= 40 μm



**Fig. 2.15.3. 20 days after inoculation with *Phakopsora gossypii*** (A) A closed uredium with uredospores on the abaxial leaf surface, (B) Many uredospores (arrow) in an open uredium. Scale bars = 2 μm and 10 μm



**Fig. 2.15.4. Measurement of uredospore size: Width-21.63 μm and Length-19.57 μm.** Scale bars= 2 μm

## 2.16 Project Name: Studies on plant parasitic nematodes of cotton

PI: J. Gulsar Banu

**Importance of the study:** Plant-parasitic nematodes are considered hidden enemy of Cotton in India. When they interact with fungi and bacteria, yield loss is increased by several folds. Increased awareness about the harmful effects of chemical nematicides on non-target organisms, human beings and the environment,

in addition to phytotoxicity necessitates safer approaches for nematode management in cropping systems. To develop eco-friendly alternatives, a wide spectrum of plant metabolites with nematostatic and nematicidal action has been extensively reported. This study aims to identify novel photochemistry by in silico analysis and in vitro studies and to develop an integrated nematode management strategy to combat losses due to nematodes in Cotton.

#### Salient findings

The nematicidal activity of Nimbolide, a tetranorterpenoid (limonoid) compound isolated from the leaves of *Azadirachta indica*, against the nematode pests of Cotton was proved by in silico analysis and in vitro studies. Docking analysis revealed that Nimbolide had the highest binding affinity for the protein targets, followed by the nematicide, Fluopyrum and Fluensulfone. Carbofuran exhibited the lowest binding affinity for target proteins. Nimbolide served as a potential inhibitor of the target proteins like ODR1, Cathepsin L-like cysteine proteinase, HSP90, Neuropeptide GPCR, and Heat Shock and causes irreversible paralysis of nematodes.

A novel nematode pathogenic bacterium *Enterobacter cloacae* was isolated from reniform nematodes and its molecular characterization was performed. Infected juveniles become sluggish, stick to wall, internal content oozes out, vacuole formation, crowded, and finally dead within 24 hours. Cell free extract of *E. cloacae* significantly reduced egg hatching and juvenile survival of *Rotylenchulus reniformis* and *Meloidogyne incognita* under in vitro condition.

Soil application of talc based formulation of *Pochonia chlamydosporia* @ 1Kg/ac or Soil drenching of liquid formulation of *P. chlamydosporia* @ 2.50 l/ac was effective against reniform nematode and found to be safer to earthworms and beneficial nematodes under field condition. Talc based formulation mixed with vermicompost supported longer persistence of spores under field condition.

#### 2.17 Project Name: Development of biocontrol consortia with multifaceted fungi for the management of important pests and nematodes of cotton

PI: J. Gulsar Banu

Co-PI: Shivaji Thube

**Importance of the study:** The biocontrol ability of bio agents to manage pests and nematodes has been well documented, but the variability of results is often recorded under field conditions. Originally, biocontrol research focused on the application of a single microorganism, and the inconsistent and ineffectiveness of a single organism is often related to limited competitiveness with native microbes and the environment. Under such circumstances, microbial consortia that exhibit diverse modes of action and synergistic effects that enhancing biocontrol efficacy is

need of hour. This study focused on the development of safer biocontrol consortia for managing sucking pests and nematodes in cotton.

#### Salient findings

- A liquid-based bioconsortia formulation of the native entomopathogenic fungus *Lecanicillium lecanii* and the bacterium *Acenitobacteri loffii* was developed and evaluated under field conditions. Spraying of liquid formulation biopesticide consortia @ 5 ml/l twice at 15 days interval causes significant reduction in jassids and aphids. Spraying biopesticide consortia is more effective than *L. lecanii* and *A. ilofii* alone. Biopesticide consortia were ranked next to insecticide in terms of efficacy. This consortium is safer for Coccinellid beetles and spiders in field conditions.
- A talc-based bionematicide consortia with the native nematode antagonistic fungus *Pochonia chlamydosporia* and the bacterium *Pseudomonas fluorescens* was developed and evaluated against the Reniform nematode *Rotylenchulus reniformis* infesting cotton. Soil application of this bionematicide consortia @ 5g/kg soil significantly reduced reniform nematodes. Significant reductions in soil and root populations, number of egg masses and number of eggs/egg mass was recorded. This consortium was safer to earthworms and beneficial nematodes (predatory and entomopathogenic nematodes) under field conditions.
- The molecular characterization of 24 endophytic fungi from cotton root identified them as *Amesiani gricolor*, *Aspergillus* sp., *Aspergillus sydowii*, *Aspergillus versicolor*, *Fusarium solani*, *Fusarium verticillioides*, *Paecilomyces tenuis*, *Talaromyces albobi verticillius*, *Talaromyces* sp., and *Talaromyces trachyspermus*.

#### 2.18 Project Name: Thermal stress induced effect on insecticide susceptibility and fitness traits in whitefly, *Bemesia tabaci*, a serious pest of worldwide concern

PI: Rishi Kumar

Co-PIs: Debashis Paul, B.S. Fand

**The importance of the study:** This study aims to investigate the effects of basal and induced thermal stress on the fitness traits of whitefly. This research also enumerated the stress- induced effects on the efficacy of insecticides on fitness traits in whitefly and associated biochemical changes in host plants and insects under basal and induced thermal stress.

#### Salient findings

- Whitefly mortality increased significantly at extreme temperatures, with higher mortality observed under no-host conditions.
- Fecundity, nymphal development, and adult emergence were adversely affected by exposure to high and low temperatures.
- In the experiment on the effect of temperature on the



egg stage was studied. The eggs were subjected to six different temperatures for two hours duration at: 37, 39, 41, 43, 45, and 26°C on a potted plant. Egg hatching percentage declined progressively with

increasing temperature, with the lowest at 45°C.

- Field-collected whiteflies exhibited greater thermal tolerance compared to those reared under controlled polyhouse conditions (Figure 2.18.1 & 2) (Table 2.18.1).

**Table 2.18.1: Comparison of mortality (%) after basal exposure in adult whitefly reared in ambient conditions to temperature stress under Host and No-host environment.**

| Temp<br>(°C) | Dead Adults (%) after basal exposure |             |                                                       | Temp<br>(°C) | Dead Adults (%) after basal exposure |            |            | Difference<br>in dead<br>adults (No -<br>host & with<br>host) |  |  |
|--------------|--------------------------------------|-------------|-------------------------------------------------------|--------------|--------------------------------------|------------|------------|---------------------------------------------------------------|--|--|
|              | High temperature                     |             | Difference in Dead<br>adults (No-Host &<br>with host) |              | Low temperature                      |            |            |                                                               |  |  |
|              | No-Host                              | With Host   |                                                       |              | No-Host                              | With Host  |            |                                                               |  |  |
| 49           | 100                                  | 90.88       | 9.12                                                  | 26           | 18.43                                | 9.28       | 9.15       |                                                               |  |  |
| 47           | 100                                  | 89.47       | 10.53                                                 | 25           | 21.00                                | 10.33      | 10.67      |                                                               |  |  |
| 45           | 100                                  | 70.45       | 29.55                                                 | 24           | 21.66                                | 12.33      | 9.33       |                                                               |  |  |
| 44           | 93.58                                | 58.89       | 34.69                                                 | 23           | 29.58                                | 12.17      | 17.41      |                                                               |  |  |
| 43           | 80.16                                | 52.00       | 28.16                                                 | 21           | 32.57                                | 15.00      | 17.57      |                                                               |  |  |
| 41           | 68.93                                | 41.18       | 27.75                                                 | 19           | 34.00                                | 19.00      | 15.00      |                                                               |  |  |
| 39           | 47.20                                | 27.36       | 19.84                                                 | 17           | 32.20                                | 25.26      | 5.94       |                                                               |  |  |
| 37           | 37.14                                | 18.75       | 18.39                                                 | 15           | 34.68                                | 27.52      | 7.16       |                                                               |  |  |
| 35           | 35.83                                | 18.33       | 17.50                                                 | 13           | 42.93                                | 27.94      | 14.99      |                                                               |  |  |
| 34           | 34.16                                | 16.49       | 17.67                                                 | 11           | 44.63                                | 29.63      | 15.00      |                                                               |  |  |
| 33           | 32.71                                | 16.46       | 15.25                                                 | 9            | 47.97                                | 32.56      | 15.41      |                                                               |  |  |
| 31           | 30.00                                | 15.00       | 15                                                    | 7            | 53.06                                | 34.68      | 18.38      |                                                               |  |  |
| 29           | 27.50                                | 12.50       | 15                                                    | 5            | 73.39                                | 48.54      | 24.85      |                                                               |  |  |
| 27           | 23.33                                | 10.83       | 12.5                                                  | 3            | 75.55                                | 51.04      | 24.51      |                                                               |  |  |
| Range        | 23.33-100                            | 10.83-90.88 | 9.12-34.69                                            | Range        | 18.43-75.55                          | 9.28-51.04 | 9.15-24.85 |                                                               |  |  |



Figure 2.18.1 Field Collected Population during experimentation



Figure 2.18.2 Population reared in Poly-house during experimentation

## 2.19 Project Name: Season-long monitoring & management of pink bollworm in cotton crop in North Zone (RASI-ICAR-CICR-CSR-Project)

PI: Rishi Kumar

Co-PIs: Y.G. Prasad, S.K. Sain

**The importance of the study:** This study aimed to perform season-long monitoring of prominent carryover sources of pink bollworm i.e., cotton stalks, cotton seed, and management of pink bollworm in the North Zone.

### Salient findings

- Surveys were conducted (Figure 2.19.1) in ginning-cum-oil extraction mills to study off-season sources of pink bollworm (PBW) carryover. A total of 30 cotton seed samples (each 500 grams) were collected from various locations in Haryana. On an average, 24.68% of seeds were damaged by PBW, with the damage ranging from 11.18% to 41.98% during February to May 2024. PBW larval recovery ranged from 0.00 to 18.33, and pupal case recovery ranged from 0.00 to 25.00 per sample.



Figure 2.19.1: Surveys for Off-season sources of carryover of Pink Bollworm in Cotton (a to b)

## 2.20 Project Name: Collection, characterization and evaluation of beneficial fungal microorganisms from North, Central and South cotton growing zones

PI: S.K. Sain

Co-PIs: S.P. Gawande, P. Valarmathi,

**Importance of the study:** This study aimed to isolate, characterize, and screen beneficial rhizosphere fungi in cultivated cotton for disease management, plant growth, and productivity enhancement in an integrated and organic farming system.

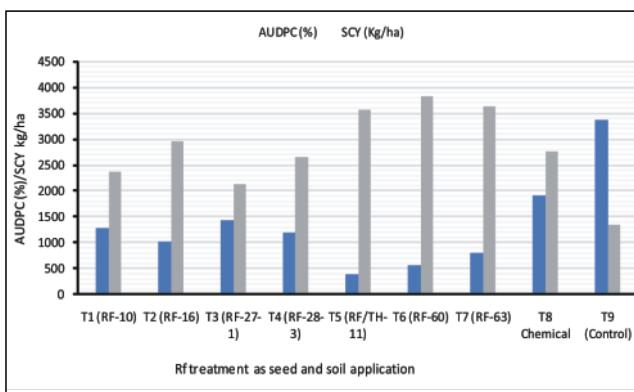



Figure 2.20.1: Evaluation of selected Rhizospheric fungi on cotton root-rot control and yield under root rot-sick-field conditions (Pooled 2022-23 and 2023-24)

## Salient findings

- Among 100 cotton rhizospheric fungi (Rfs), seven isolates showed promise based on their antagonism against root rot pathogens and plant vigour index (PVI). Under root rot sick conditions at the ICAR-CICR, RS Sirsa (2022-23 and 2023-24), Rf-Th-11 (*Trichoderma asperellum*) recorded the lowest AUDPC, followed by Rf-60 and Rf-63 (*Actinomortierella* spp.). The highest seed cotton yield (cv. RCH-926) was observed with Rf-60 (38.2 q/ha), followed by Rf-Th-11 (35.8 q/ha) and Rf-63 (35.2 q/ha) (Figure 2.20.1).
- In pot culture experiments, consortia of top-performing Rf fungi were used for seed treatments (cv. Bayer First Class) the highest PVI with Rf-11+Rf-16+Rf-60+Rf-63 (4806%), followed by Rf-16+Rf-60 (4414%), Rf-16+Rf-63 (4358%), Rf-Th-11+Rf-60 (4167%), and Rf-Th-11+Rf-63 (4140%), compared to the control (2753%) (Figure 2.20.2).
- Rf-TNAU Tv1 and Rf-CRSVP VTv1 (*T. viride*) performed better in terms of PVI and root rot control in Bt Suraj and Suraksha. Under pot conditions in Suraksha, Rf-TNAU Tv1 exhibited the highest root colonization ( $9.4 \times 10^4$  cfu/g soil), PVI (5974%), and the lowest disease incidence at 60 DAS, followed by Rf-CRSVP VTv1 (Figure 2.20.3).

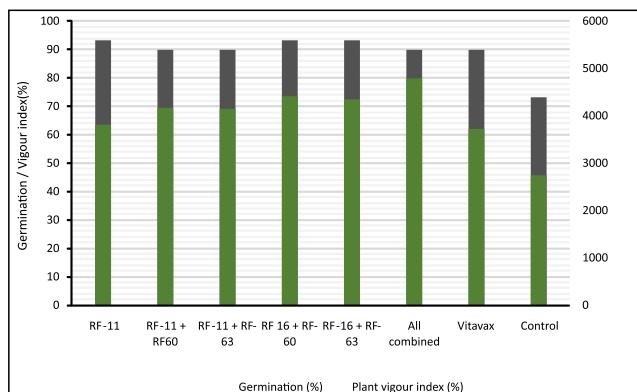



Figure 2.20.2: Effect of combined application of rhizospheric fungi on seed germination and plant vigour index under pot-culture conditions (Pooled 2022-23 and 2023-24)



Figure 2.20.3: Evaluation of selected Rhizospheric fungi for disease control and vigour index under Pot Conditions in variety Suraksha (60 DAS)

### 3. CROP PRODUCTION DIVISION

#### 3.1 Project Name: Long-term impacts of sub-soiling and cover crop rotation on soil properties and N requirement of cotton

PI: D. Blaise

Co-PIs: R. K. Singh (IISB, Bhopal)

**Importance of the study:** Poor root growth in cotton may be either due to hard pan or natural causes. Mechanical (sub-soiling) and biological methods (crop rotation) are possible means to improve crop root growth and seed cotton yields.

##### Salient findings

Field experiments were conducted for the sixth year in a row with all treatments on a fixed layout. Among the application of fertilizer-N (75%, 100% and 125% of the recommended dose), seed cotton yields were significantly lower with the 75% application rate than the recommended and 1.25 times the recommended dose of N. Crop rotation resulted in yields significantly greater than deep sub-soiling and control plot at 75% and 100% of the recommended dose. At 1.25 times the recommended doses, the seed cotton yield did not differ between crop rotation and sub-soiling treatments. The increase in seed cotton yields with greater N rate was due to a significant increase in the number of bolls. Averaged over treatments, application of 1.25 times the recommended dose of N had the maximum number of bolls (80.9 bolls/m<sup>2</sup>) compared with 63.4 bolls/m<sup>2</sup> with the recommended dose and the least with 75% of the recommended dose of N (49.2 bolls/m<sup>2</sup>). Boll weight did not differ significantly between treatments (3.56 to 3.69 g). Among the treatments, rotation treatment plots had a significantly greater seed cotton yield than the control, cotton after a fallow, and sub-soiling treatments (Fig. 3.1.1).

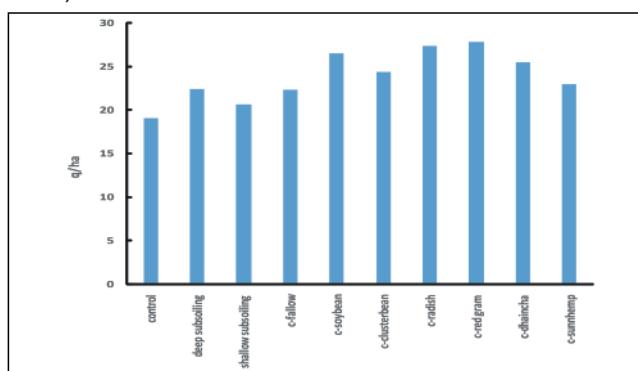



Fig. 3.1.1. Seed cotton yield as influenced by sub-soiling and crop rotation

Among the rotation treatments, cotton following red gram had the highest seed cotton yield, but did not differ with the soybean, radish, daincha, and cluster bean treatments. However, yields were greater than those of sunhemp treatment. Soil penetration resistance was recorded during the crop growing season using a penetrometer at regular depth intervals. In general,

penetration resistance increased with decreasing soil moisture. During the crop growing season, soil strength values were in the range of 0.75 to 1.2 MPa in the top soil. Higher soil strength was observed at later crop growth stages when the soils began to dry following the cessation of rain.

#### 3.2 Project Name: Network Programme on Precision Agriculture (NePPA)

PI: Y.G. Prasad

Co-PIs: Blaise Desouza, R. Raja, K. Rameash, Shailesh Gawande, Dipak Nagrale, B. B. Fand, N. S. Hiremane, P. Nalayini, Amarpreet Singh, D. Kanjana, A. Manikandan, J. H. Meshram, Pooja Verma

**Importance of the study:** As a partner of the ICAR-NePPA project, ICAR-Central Institute for Cotton Research, Nagpur has conducted research on precision farming technologies in cotton with defined objectives, viz., (i) Quantitative assessment of crop health using sensors and data analytics, (ii) Developing Decision Support Systems (DSS) for precision agriculture, and (iii) Developing Variable Rate Technologies (VRTs) for site specific input management and carried out different activities

##### Salient findings

ICAR-CICR developed an 'AI Smart Trap' that enables real-time monitoring of the pink bollworm. By integrating the traditional trapping method with modern communication technology, the smart trap system provides real-time information on the dynamics of the pest population with the corresponding weather parameters. This technology is useful for area-wide pest monitoring, which is a major obstacle to traditional monitoring methods using pheromone trap in cotton. Pilot testing of the Smart trap developed by ICAR-CICR under NePPA was undertaken for Real-time Monitoring of 'Pink bollworm' in Punjab with the financial assistance from the Department of Agriculture & Farmers Welfare, Govt. of India. Pheromone traps were installed at 18 locations in three major cotton growing districts of Punjab, viz., Mansa, Bathinda, and Sri Muktsar Sahib, at the identified farmers' fields. At these locations, conventional pheromone traps were also installed, and weekly trap catch data were recorded for comparison. A dedicated web portal <https://cicr.indianmark.com/> was developed for real-time information on the pink bollworm trap catch and corresponding weather data.

An infrared (IR) sensor trap was developed for the automated monitoring of lepidopteran pests in cotton. The IR sensor system, consisting of a transmitter and a receiver, was installed at the narrow end of a pheromone-based funnel trap to count the number of insects captured. The transmitter emits a continuous beam of infrared light across the funnel exit, which is precisely aligned with the receiver. When an insect passed through the funnel and disrupted the IR beam, the interruption was detected and recorded as a single count. Each beam break corresponds to the entry of an individual insect, thereby enabling accurate and real-time quantification of trap catches. The data generated by the IR sensor is

processed by a control unit mounted on the support pole. This unit is powered by a 10-W solar panel and comprises a rechargeable battery, a processing circuit, and a GSM module. The GSM module transmits recorded insect counts as SMS text messages to designated mobile numbers at hourly intervals. This IR-based monitoring system offers several advantages, including non-contact and precise insect detection, energy-efficient operation via solar power, and suitability for deployment in remote agricultural fields. Moreover, it enhances integrated pest management (IPM) strategies by facilitating timely, evidence-based decisions on pest control interventions.

Traditional disease identification methods, such as manual field inspections, heavily rely on expert knowledge and often miss early-stage infections due to subtle symptoms. Although laboratory tests offer precise results, they are costly and time-consuming, making them impractical for large-scale or real-time monitoring. To address this, machine learning-based disease detection was attempted. Convolutional Neural Networks (CNN) were employed for RGB image processing and classification with a dataset of 954 images from ICAR-CICR, Nagpur, for detecting and classifying cotton boll rot disease. A dataset of 654 diseased and 300 healthy boll images was prepared using a digital camera and converted to grayscale via GLCM for segmentation. The combined CNN and YOLO for real-time detection provided high accuracy with minimal background errors. The model was tested using Google Colab, and a Python-based user interface (UI) was developed for real-time disease identification- to enhance cotton disease management. The model accurately identified early-stage infections, supporting timely disease management. The system automatically identified the distinguishing features of infected bolls and distinguished them from healthy ones based on visual patterns. Optimized over multiple epochs, the model achieved the highest validation accuracy of 92% in 21st epoch. This study marks a significant advancement as the first to apply CNN techniques specifically for boll rot detection in cotton, thereby enhancing the precision of disease identification and management.

Managing within-field variability of soil for precision nitrogen (N) management is challenging. The advent of unmanned aerial systems based on multispectral sensors combined with data analytics provides an option to address this issue. Field experiment were conducted with graded levels of applied N involving 7 levels (25%, 50%, 75%, 100%, 125%, 150%, and 200% of ICAR-CICR prescribed dose of N (80 kg ha<sup>-1</sup>) along with a control (No N). UAS-based multispectral crop imaging data were collected to develop an algorithm for calculating N dose

for its in-season variable rate application. The multispectral imagery was processed for different crop growth stages, and treatment-wise mean Normalized Difference Red-edge Index (NDRE) values were calculated. The 95th percentile NDRE values and spatial Nitrogen Adequacy Index (NAI) maps were generated. NAI-based nitrogen sufficiency response curve was generated and parameterized by the N rate that maximized cotton yield. The best fits were obtained using a quadratic model with a coefficient of determination (R<sup>2</sup>) value of 0.84. The algorithm is being further refined and validated for different genotypes.

Sensor-based irrigation in cotton was carried out during kharif 2023. The moisture sensor used in the experiment was dielectric soil moisture sensor type. The moisture content at the field capacity was 45%, and whenever the soil moisture reached 34% and 23% in the sensor, irrigation was scheduled for 25 % DASM (depletion of available soil moisture) and 50 % DASM, respectively. The 'sensor-based' irrigation resulted in higher seed cotton yield, lesser water consumption and higher water use efficiency in cotton than the ET based drip irrigation and the traditional flood irrigation method (Table 3.2.1).



Sh. Manoj Ahuja IAS, Secretary (DoA&FW) inspecting AI Smart Trap



Infrared Sensor Trap for monitoring of lepidopteran pests in cotton

**Table 3.2.1: Effect of sensor-based Irrigation on seed cotton yield (kg/ha) and water use efficiency in cotton during kharif 2023**

| Irrigation Treatments                | Seed Cotton yield (kg/ha) | Water used (ha cm) | Water use efficiency (kg seed cotton/ha cm) |
|--------------------------------------|---------------------------|--------------------|---------------------------------------------|
| ET based Irrigation (Drip at 1.0 ET) | 2634                      | 57.95              | 43.5                                        |

| Irrigation Treatments                       | Seed Cotton yield (kg/ha) | Water used (ha cm) | Water use efficiency (kg seed cotton/ha cm) |
|---------------------------------------------|---------------------------|--------------------|---------------------------------------------|
| Sensor based Irrigation (Drip at 25 % DASM) | 3092                      | 53.55              | 57.7                                        |
| Sensor based Irrigation (Drip at 50 % DASM) | 2790                      | 53.55              | 52.1                                        |
| Conventional Irrigation                     | 1978                      | 78.80              | 23.1                                        |
| CD (P=0.05)                                 | 354                       | -                  | -                                           |

### 3.3 Project Name: Land diagnostic Survey (LDS) of cotton production practices and crop performance in Maharashtra

PL: Y.G. Prasad

PI: Ramkrushna G.I.

Co-PIs: A.R. Reddy, M.V. Venugopalan, Shailesh P. Gawande, M. Sabesh, Rahul M. Phuke, Ranjit Kumar Paul, Soumen Pal and R. Jaya Kumaravaradan

**Importance of the study:** To understand possible factors responsible for low productivity in Maharashtra, a study was conducted through a project entitled “Landscape Diagnostic Survey (LDS) of cotton production practices and crop performance in Maharashtra” which was funded by the Rajiv Gandhi Science and Technology Commission, Government of Maharashtra.

#### Salient findings

The data showed that the average seed cotton yield (SCY) under irrigated conditions was 8.6 quintals per acre, while under rainfed conditions it was 3.1 quintals per acre. This indicated a clear advantage of irrigation, with a yield difference of 3.5 quintals per acre on average. Among the districts, Amravati recorded the highest yield under irrigation at 10.0 q/acre, followed by Ahilya Nagar (9.8 q/acre) and Jalna (9.4 q/acre). Under rainfed conditions, Akola performed the best with 6.4 q/acre, while Wardha (3.8 q/acre) and Beed (3.6 q/acre) also showed relatively better yields (Fig 3.3.1). Jalgaon had the lowest yield at 3.3 q/acre under irrigated conditions followed by Nandurbar with 3.9 q/acre. Poor yields of Jalgaon and Nandurbar were mainly due to severe infestation of pink bollworm. In rainfed areas, Nandurbar (4.3 q/acre) and Ahilya Nagar (4.4 q/acre) had the lowest yields. The yield gap between irrigated and rainfed conditions was the highest in Ahilya Nagar (3.4 q/acre) and Amravati (3.0 q/acre), indicating the strong impact of irrigation in those areas. Irrigated fields yielded 68% more seed cotton over rainfed fields. Overall, the findings highlighted the importance of improving irrigation access and technology adoption in rainfed areas to enhance cotton productivity.

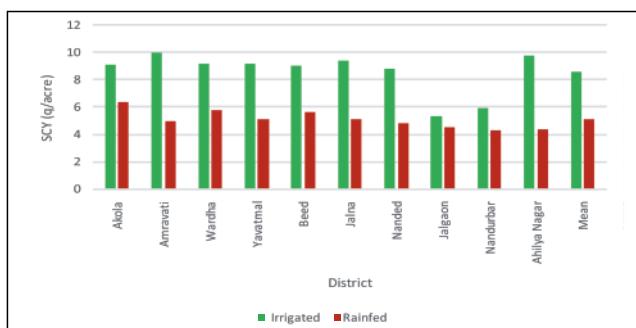



Fig 3.3.1 Seed cotton yield (q/acre)

### 3.4 Project Name: Effects of varied canopy management and mulching on growth, productivity and profitability of cotton

PI: AS Tayade

Co-PIs: P. Nalayini, Ramkrushna GI, K. Velmourougan, A. Manikandan, Pooja Verma

**Importance of Study:** The deployment of varied plant densities and canopy management practices is of paramount importance in order to enhance the cotton growth and seed cotton yield. Canopy management influences the cotton morphological and biochemical parameters immensely. Changes in weed dynamics and soil moisture regimes can substantially affect cotton crop growth and the physical, chemical, and biological properties of cotton soil.

#### Salient findings

During the crop season 2024-25, an experiment with 24 treatment combinations was conducted to standardize the use of Jute Agro Textile (JAT) bio-mulches and canopy management in the High-density planting system (HDPS) and Closer Spacing (CS) in split- split plot experimental design with three replications in Rasi swift, a cotton hybrid, in shallow and medium soils. Among the planting systems, yield under closer spacing (37.86 q/ha) was comparable to that under HDPS cotton planting system (33.0 q/ha). Manual canopy management in cotton recorded significantly higher yield (38.63 q/ha) than chemical canopy management (33.41 q/ha). Five hundred GSM JAT bio-mulch was found comparable with polyethylene mulching, wherein, polyethylene mulching (31.93 q/ha) in cotton recorded significantly higher seed cotton yield over control. Medium deep soils had higher soil biological activity (microbial biomass carbon, glomalin content, soil polysaccharides, soil protein, soil enzyme activities) than shallow soils. HDPS and jute mulching practices enhanced soil biological activities. Except phosphatase activity, other soil biological parameters were higher under manual canopy management. The performance of different mulches in cotton was also evaluated at ICAR-CICR, Regional Station, and Coimbatore, where polyethylene mulching recorded the highest seed cotton yield of 3978 kg /ha, which was 62.4% over no mulching. Jute mulches recorded 23%, 44%, and 36.8% higher seed cotton yields at 500,600 and 700 GSM than conventional no mulching. Among the jute mulches, 600 GSM recorded the highest seed cotton yield (3527 kg/ha} and was on par with 700 GSM, and was superior to 500 GSM.

### 3.5 Project Name: Quantitative estimation of carbon and moisture fluxes over the cotton based agro-ecosystem: Integrating ground observation, satellite



## data and modeling (in collaboration with ISRO-NRSC)

PI: Ramkrushna G.I.

Co-PI: A Manikandan

**Importance of the study:** Ecosystem-level carbon fluxes serve as crucial indicators of the functioning and sustainability of crop production systems. Their quantification provides valuable insights into the long-term impacts of current management practices. In this study, the eddy covariance (EC) technique was used to measure CO<sub>2</sub> fluxes from a rainfed cotton production system in Central India during the 2024-2025 cropping season.

### Salient findings

The ecosystem was found to be a net CO<sub>2</sub> source for about two weeks from the date of sowing, as the crop stand was meager and ecosystem respiration exceeded photosynthetic processes. This is reflected in the relatively low mean CO<sub>2</sub> flux of 1.061 g cm<sup>2</sup> d<sup>-1</sup> in May and 2.553 g cm<sup>2</sup> d<sup>-1</sup> in June. However, the ecosystem transitioned into a net CO<sub>2</sub> sink thereafter, as crop growth improved and photosynthetic activity began to dominate. The peak net CO<sub>2</sub> influx was observed during the flowering initiation to the first boll opening stage, particularly in October, which is consistent with the high mean CO<sub>2</sub> flux of 1.865 g C m<sup>2</sup> d<sup>-1</sup> on October 10, 2024 and 3.899 g cm<sup>2</sup> d<sup>-1</sup> on October 24, 2024, indicating continued photosynthetic activity and carbon sequestration by the crop (Fig 3.5.1). Soil moisture content varied temporally and with depth from May to October. From May to July, all treatments (Mini, Opt, Maxi at 20 cm and 40 cm) produced low moisture levels (0.2–0.4 m<sup>3</sup>/m<sup>3</sup>). In August, moisture improved, especially in Opt and Maxi at 40 cm, reaching 0.4–0.6 m<sup>3</sup>/m<sup>3</sup>, with Maxi even hitting 0.6–0.8 m<sup>3</sup>/m<sup>3</sup> coinciding with peak crop growth. During September and October, higher moisture was sustained in Opt and Maxi at 40 cm, while Mini at 20 cm remained lower. This indicates that deeper soil placement and higher inputs enhance moisture retention, supporting better crop performance and CO<sub>2</sub> uptake. The mean Net Ecosystem CO<sub>2</sub> Exchange (NEE) was 1.12 g C m<sup>2</sup> d<sup>-1</sup> during sowing to germination, -0.22 g C m<sup>2</sup> d<sup>-1</sup> germination to squaring, -1.32 g C m<sup>2</sup> d<sup>-1</sup> during squaring to flowering initiation, -2.1 g C m<sup>2</sup> d<sup>-1</sup> flowering initiation to

first boll opening. It declined after that during the boll bursting stage and was -0.9 g C m<sup>2</sup> d<sup>-1</sup> during the period from second to last picking.

## 3.6 Project Name: Validation and refinement of organic cotton production technology

PI: Ramkrushna G.I.

Co-PIs: Rachna Pande, Neelakanth S. Hiremani

**The importance of the study:** Hazardous synthetic pesticides used in non-organic farming can damage ecosystems, poison waterways, and endanger workers who cannot always afford the necessary safety equipment. Organic cotton is a great eco-friendly cotton production system. Cotton is grown without the use of pesticides, herbicides, or other chemical fertilizers, that is simply better for human health and the environment. By encouraging biological diversity, it creates conditions that reduce the likelihood of any insect, bird or mammal doing any major damage to their crop. Keeping this in view, this project aimed to validate and refine available organic cotton production practices.

### Salient findings

#### Identifying optimum nutrient supply combination to organic cotton

An experiment was undertaken using different combinations of organic sources viz., 5 t/ha FYM + Other alternate sources (300 kg/ha vermicompost, 200 kg/ha neem cake, two sprays of vermiwash, two sprays of Panchgavya + Biomulching (Sunhemp) + Biofilm), 2.5 t/ha FYM + other alternate sources (300 kg/ha vermicompost, 200 kg/ha neem cake, two sprays of vermiwash, two sprays of Panchgavya + Biomulching (Sunhemp) + Biofilm), PKV organic package (10 t/ha FYM + Biofertilizer + Intercrop (Mung) + Biomulching), RDF (inorganic treatment) and compared with control (No nutrients) and available farmers' practice. Among the different treatments, no significant variation was found in terms of boll weight, number of bolls per plant and tur grain yield (Table 3.6.1). Five tones/ha FYM + Other alternate sources produced on par seed cotton yield (9.69 q/ha) with PKV package (8.96 q/ha) and RDF (inorganic treatment) (11.93 q/ha). The control had the lowest seed cotton yield (3.88 q/ha).

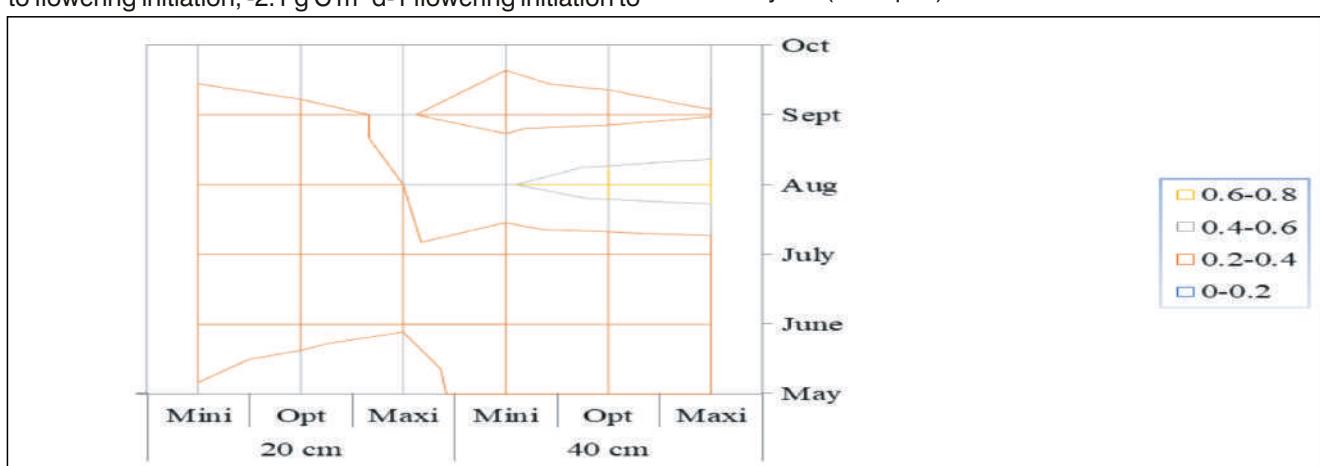



Fig 3.5.1 Depth wise soil moisture content (20 cm and 40 cm) during cotton growing season

**Table 3.6.1 Effect of different organic treatments on yield attributes and yield.**

| Treatment Details     | SCY (q/ha) | Boll weight (g) | Bolls / plant | Nodes | Mono pods | Sympods |
|-----------------------|------------|-----------------|---------------|-------|-----------|---------|
| Control               | 3.88       | 3.17            | 10            | 20    | 0.72      | 15      |
| Farmer's Practice     | 7.25       | 3.47            | 10            | 21    | 0.56      | 15      |
| Natural Farming       | 7.77       | 3.50            | 9             | 20    | 0.72      | 15      |
| 3.0 T/ha FYM + other* | 9.69       | 3.57            | 12            | 22    | 1.33      | 16      |
| 2.5t/ha FYM + Other*  | 8.80       | 3.80            | 11            | 22    | 0.56      | 15      |
| PKV Package#          | 8.96       | 3.47            | 12            | 22    | 1.06      | 17      |
| RDF inorganic         | 11.93      | 3.60            | 13            | 26    | 2.22      | 19      |
| CD (p=0.05)           | 3.09       | NS              | NS            | 2.61  | 0.58      | 1.75    |

Other: 300 kg/ha vermicompost, 200 kg/ha neem cake, two sprays of vermiwash, two sprays of Panchgavya + Biomulching (Sunhemp) + Biofilm, #PKV package: 10 t/ha FYM + Biofertilizer + Intercrop (Mung) + Biomulching

#### Evaluation of cotton cultivars grown under organic cultivation

Ten *G. hirsutum* cultivars CNH 1128, CNH 1111, Partech 29, Partech 30, Suraj, Anjali (LRK 516), NH 615, Vaidehi (colour), Suraksha, BB 7 and five *G. arboreum* varieties CNA 175-22 (colour), PA 812, PA 810, CNA 1054 and CNA 1032 were evaluated under organic conditions. Among the different varieties, the highest number of open bolls per plant was observed in CNH 1111 (16), followed by PA 810 and CNA 1054. The highest boll weight (4.15) was recorded with Non Bt hybrid Partech 30 followed by another non Bt hybrid Partech 29 (4.10). Colour desi cotton variety CNA 175-22 (14.99 q/ha) produced the highest seed cotton yield, which was closely followed by Non Bt hybrid Partech 29 (13.88 q/ha). Among the *G. hirsutum* varieties, CNH 1128 produced the higher seed cotton yield (10.06 q/ha).

Pink bollworm damage ranges from 0 -45%. At approximately 120 DAS (5-35%) minimum (%) damage was in CNA 1032, 140 DAS (0-25%) minimum (%) damage was in BB7 (60×30) and CNA 175-22, 150 DAS (5-45%) minimum damage was in PA 810, 170 DAS (5-55%) minimum damage was in BB7 (60×15), BB7 (60×30), CNA 1032, CNA 175-22, PA 812 and 185 DAS (0-45%) minimum damage was in CNH 1128 at 10 days interval. Bacterial blight was the major disease whereas; Grey mildew and *Corynespora* leaf spot were comparatively less severe during the season. Bacterial blight was found in all the nine cultivars screened wherein the PDI was ranging from 1.4 to 22.8%. However, highest mean PDI was seen Suraksha (12.6%) followed by CNH-1128 and NH-613. Lowest mean PDI was seen in Vaidehi (2.05%) followed by Partech-29.

#### Evaluation of microbials

Microbial culture viz., *Diaporthe longicolla* (CEL-48), *Trichoderma harzianum*, *Bacillus tequilensis*, *Trichoderma longibrachiatum*, *Diaporthe longicolla* (CEL-41), *Daldinia eschscholtzii* (M1- 4), *Diaporthe* sp.

(CFL-34) were evaluated against cotton insect pests. Inorganic insecticides and neem oil were used as positive control. Against the aphid, *D. longicolla*, *T. harzianum*, *T. longibrachiatum*, *D. eschscholtzii* were the microbials at par with the positive control. No incidence of pink bollworm was observed in *D. longicolla*, *D. eschscholtzii*, *Diaporthe* sp. (CFL-34), *B. tequilensis* treatments after 120 DAS (days after sowing). During the 140 DAS and 150 DAS, the population was below the ETL for some microbials, however, after 170 DAS in all treatments including positive check PBW incidence was above ETL.

A field trial was conducted to test the efficacy of different microbial biocontrol agents against cotton diseases. Bacterial blight was the major disease, whereas, fungal leaf spots were found in traces. Bacterial blight disease severity (PDI) ranged from 1.6% to 22.13% (Fig. ). The disease severity (mean PDI) was maximum in control (17.28%), whereas reduction in disease severity over control was maximum in T8 (inorganic treatment), followed by T1 (*Diaporthe longicolla*- 51.54%) and T6 (*Daldinia eschscholtzii*- 51.23%).

#### Field evaluation of plant extracts against insect pests and diseases in cotton

Based on the previous year's results, a total of 4 botanicals viz., Neem seed kernel extract 5%, Dashparni 10%, Pongamia 5%, and Panchgavya 10%, were evaluated against inorganic insecticides and neem oil. All botanicals were effective against the aphids as no incidence was observed during different period after sowing and varied time of sowing. Damage of *H. armigera* was effectively managed by botanicals at 60 and 90 days after sowing. In addition, significantly higher yield was recorded in all the treatments.

#### 3.7 Project Name: Nutrient Profile based fertilizer management in cotton

PI: A. Manikandan

Co-PI: K. Sankaranarayanan

**Importance of the study:** Sigmoidal growth indicate that day-to-day nutrient and water requirement demands varied in critical stages of cotton under rainfed conditions. However, present inadvertent nutrient



management partially fulfills the needs, resulting in low yield with inferior quality fiber. Therefore, pre-plant nutrient testing (PPNT), pre-side-dress nutrient testing (PSNT), pre-flowering nutrient testing (PFNT), pre-harvest nutrient testing (PHNT) status of cotton-growing soils as well as plant analysis (petiole, tissue testing, nutrient partitioning in different parts) from on-farm and on-station experiments are essential during the critical growth stages of cotton.

#### Salient findings

Soil analysis (PPNT-Pre plant nutrient testing; PSNT-Pre side dress nutrient testing; PFNT-Pre flowering nutrient testing; PHNT-Post harvest nutrient testing) revealed that cotton growing soils are slightly alkaline, normal electrical conductivity and low in organic carbon concentration under rainfed conditions. Similarly, rainfed cotton soils are low in nitrogen with low (on-station) to medium (on-farm) phosphorus and high potassium content. Further, the micronutrients ranged from deficient to sufficient during the experimental

period (2023-2024). Soil fertility maps of panjari farm revealed the importance of balanced nutrition (Figure 3.7.1). Further, cotton plant petiole analysis (two stages i.e., germination and seedling), plant nutrient analysis (vegetative, flowering and reproductive) during reproductive stage (90-120 days after sowing) revealed that the availability of soil nutrients (macronutrients) is low attributing to fewer bolls under rainfed conditions. Subtending leaves nutrient analysis explained that lower sympodial branch had higher concentration of macronutrients than top and middle sympodial branches at 120 DAS. Overall, nutrient uptake and accumulation were maximum during reproductive stage than vegetative and flowering. Seed cotton yield results varied between on-station and on-farm experiments suggested that on-farm mid-season nutrient management with split application based on soil and cotton plant analysis is essential for higher yields and sustainability (Table 3.7.1).

**Table 3.7.1. Seed cotton yield (kg ha<sup>-1</sup>) in on-station and on-farm experiments (2023-2024)**

| Cotton               | Spacing (cm) | SCY (kg/ha) |         | Cotton                                          | Spacing (cm) | SCY (kg/ha)                         |         |
|----------------------|--------------|-------------|---------|-------------------------------------------------|--------------|-------------------------------------|---------|
| American cotton      |              |             |         | Bt-Hybrid (<10% CaCO <sub>3</sub> )             |              |                                     |         |
|                      |              | On-station  | On-farm |                                                 |              | On-station                          | On-farm |
| NH615                | 90 x 10      | 2328        | 1654    | Ajeet-155<br>Ankur-3028<br>Dhandev +<br>RCH 779 | 90 x60       | 3281                                | 2861    |
| Suraksha - Inorganic | 90 x 30      | 1865        | 1649    |                                                 |              | 3124                                | 2770    |
| Suraksha -Organic    |              | 1641        | 1517    |                                                 |              | 2705                                | 2766    |
| Bt- variety          |              |             |         |                                                 |              | 2691                                | 2593    |
| PKV-081 Bt           | 90 x15       | 3009        | 1929    |                                                 |              | Bt-Hybrid (>20% CaCO <sub>3</sub> ) |         |
| Rajat Bt             |              | 2774        | 1876    | Ankur Kirti                                     | 90 x60       | 2825                                | 2680    |
| Suraj Bt             |              | 2037        | 2135    | Dhandev +                                       |              | 2361                                | 2766    |
| Desi cotton          |              |             |         |                                                 |              |                                     |         |
| CNA1032              | 90 x10       | 1933        | 1388    |                                                 |              |                                     |         |
| PA-740               |              | 1807        | 1545    |                                                 |              |                                     |         |
| Phule Dhanwantary    |              | 1965        | 1238    |                                                 |              |                                     |         |

### 3.8 Project Name: Efficacy evaluation of ICAR-CIRCOT nano-ZnO as nanofertilizer in field crops

PI: N. Vigneshwaran, ICAR-CIRCOT, Mumbai

CC-PIs: A. Manikandan

**Importance of the study:** In order to understand the efficacy of seed treatment (ST), foliar spray (FS), and ST+FS of nano Zn formulations (nano particles, nano suspension) on growth, yield, and nutrient accumulation in rainfed cotton under black calcareous soils. Conventional soil application (SA) of zinc sulphate (ZnSO<sub>4</sub>) compared along with nano Zn formulations.

#### Salient findings

Based on the pot and field studies, either seed treatment or foliar spray of zinc sources, viz., Zn nanoparticles or Nano Zn suspension did not affect the Bt-cotton, although it improved the plant height during the boll development stage. Although soil had Zn deficiency, Zn deficiency symptoms (Interveinal Chlorosis) were not visible during 2023-24. Cotton plant parts (root, stalk, leaf), Zn concentration is within the sufficiency range, viz., 20-200 mgkg<sup>-1</sup> (Vegetative) & 20-100 mgkg<sup>-1</sup> (reproductive). Soil Zn levels were medium (0.5-1.0 mgkg<sup>-1</sup>) during the experimental period. Among the



nano Zn formulations (Zn nano particles or Nano Zn Suspension) tested, no significant differences were observed in cotton morphology, Seed Cotton Yield

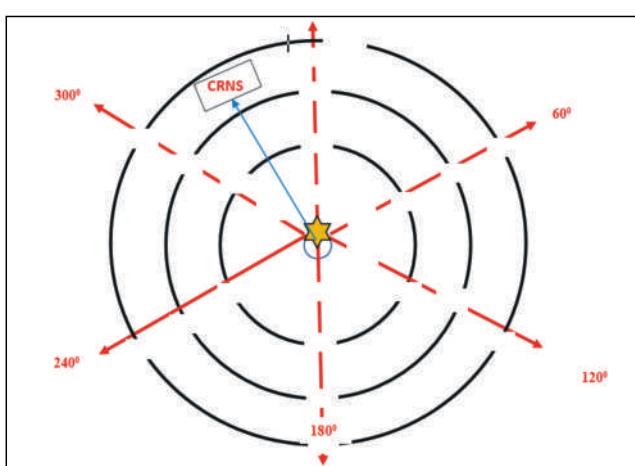
(Table 3.8.1) and Fibre quality. However, significant Zn accumulation was observed in soil and cotton plant was observed during 2023-24.

**Table 3.8.1. Effect of Nano Zinc formulations on seed cotton yield (kg ha<sup>-1</sup>) during 2023-24**

| Treatments                                                                                   | Calcareous soil |
|----------------------------------------------------------------------------------------------|-----------------|
| T1-Control (RDF+ 12.5 kg of ZnSO <sub>4</sub> )                                              | 1719 ±298       |
| T2-ST-ZnO NP's @ 20 mg kg <sup>-1</sup>                                                      | 1841 ±239       |
| T3-ST-ZnO NP's @ 50 mg kg <sup>-1</sup>                                                      | 1752 ±329       |
| T4-FS -ZnO NP's @ 200 mg kg <sup>-1</sup> (45,60 DAS)                                        | 1790 ±333       |
| T5-ST-ZnO NP's @ 20 mg kg <sup>-1</sup> + FS ZnO NP's @ 200 mg kg <sup>-1</sup> (45,60 DAS)  | 1738 ±292       |
| T6-ST -ZnO NP's @ 50 mg kg <sup>-1</sup> + FS ZnO NP's @ 200 mg kg <sup>-1</sup> (45,60 DAS) | 1807 ±210       |
| T7-ST-Nano Zn Suspension(NZnS)@ 50 mg kg <sup>-1</sup>                                       | 1820 ±324       |
| T8-FS-Nano Zn Suspension@ 200 mg kg <sup>-1</sup> (45 DAS)                                   | 1779 ±104       |
| T9-ST-Nano Zn Suspension@ 50 mg kg <sup>-1</sup> + FS-NZnS @ 200 mg kg <sup>-1</sup>         | 2182 ±456       |
| T10-FS-Nano Zn Suspension@ 200 mg kg <sup>-1</sup> (45,60 DAS)                               | 2082 ±259       |
| C.D.(0.05)                                                                                   | NS              |
| SE(m)                                                                                        | 177.01          |
| SE(d)                                                                                        | 250.33          |
| C.V. (%)                                                                                     | 16.56           |

### 3.9 Project Name: Establishment of Cosmic Ray Soil Moisture Instrument for Validation of Model Computed Soil Moisture under National Hydrology Project (NHP) -NRSC (2024)

**PI:** A. Manikandan


**Co-PIs:** YG Prasad, Ramkrushna GI

Importance of the study: Cotton water requirement is 700-800 mm during the whole growth period, and its use is varied from 2 to 8 mm per day from germination to boll development. However, changes in environmental conditions have adverse effects on soil moisture availability. Therefore, it is essential to know the soil moisture in cotton growing areas. Although different point source methods are available, they are time-consuming. Moreover, these data are not available for predicting and forecasting for a large area. Under national hydrology project (NHP), the novel COSMOS (Cosmic ray Soil Moisture Observing System) estimates root zone soil moisture within 200 m radius in horizontal space and 05-30 cm depth by measuring natural neutron radiation above the ground. Continuous monitoring of soil moisture using different sensors and dataset collection is essential for validation of hydrological model developed for cotton cropping systems.

#### Salient findings

Cosmic ray probes, soil, weather, and rainfall sensors were established at CICR, Nagpur in 2023 and calibrated during 2024. Air pressure, air temperature, relative humidity, rainfall, soil temperature, and soil

moisture (5, 15, and 50 cm depth) data were collected at 15-minute intervals and retrieved once a fortnight (15 days) during kharif season 2024. The cosmic probe was calibrated using a soil sampling strategy, and the physical and hydraulic properties of the soil were estimated during May and June 2024. Undisturbed soil samples were collected at 24 sampling points located at radii of 5, 25, 50 and 75 meters from the Probe, with 6 depths at intervals of 5 cm each. A total of 144 samples are necessary for estimating the parameters required for COSMOS calibration. During the calibration of the soil samples, the average lattice water content was 1.18 - 1.39 % and soil organic carbon storage was 2882 to 3568 g m<sup>-2</sup> (Fig 3.9.1)



Cosmic-ray Soil Moisture Observation System (COSMOS) standard soil sampling diagram



A cosmic ray probe component parts (CICR, Nagpur)

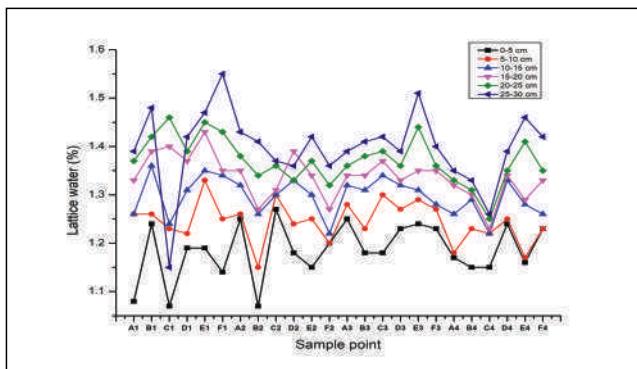
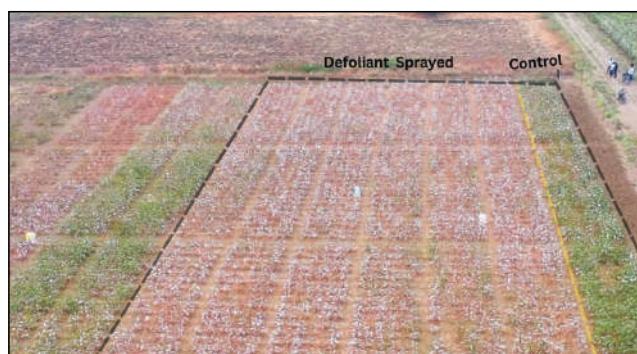
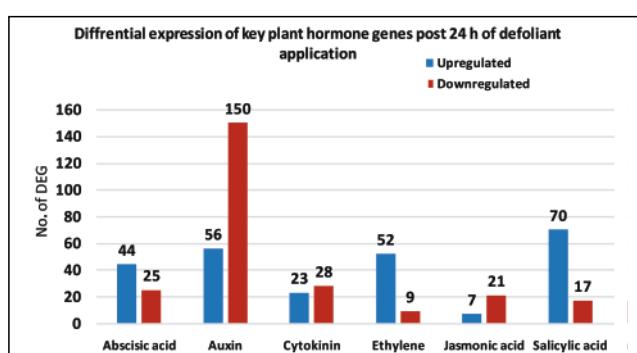



Fig 3.9.1 Study area lattice water (%) of upto 30 cm soil depth

### 3.10 Project Name: Evaluation of chemical defoliants augmenting leaf senescence for mechanical picking in Bt Cotton (DST-SERB Project)


PI: J.H. Meshram

**Importance of the study:** The elevated impurity in machine-harvested cotton is a serious bottleneck in enhancing the efficiency of cotton cultivation. Chemical defoliation is the passive abscission of leaves at the petiole of metabolically active functional leaves under the action of defoliants to facilitate a clean mechanical harvest. The defoliants used in production mainly consist of ethylene and thidiazuron, having the role of defoliation and boll opening. Defoliation in cotton involves a hormone-driven mechanism upsetting the balance between auxin and ethylene contents in the leaf. The possible cross-talk between growth hormones such as cytokinin and ethylene regulates cotton defoliation and may provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton. However, the underlying molecular mechanism that triggers leaf abscission through defoliant remains unresolved. Molecular screening (RNA sequencing) of the abscission zone (AZ) of cotton petioles from abscission cells was performed after


defoliant treatment. This molecular approach offers a new strategy for the chemical defoliation of machine-harvested cotton, ensuring stable production and reducing leaf trash in harvested cotton, thereby enhancing environmental sustainability.

#### Salient findings

The current study standardized the effective leaf defoliation rate and dose without negatively impacting fibre quality. Results showed a shift in the internal hormonal balance within the plant. The abscission zone or layer forms across the petiole near its junction with stem. SEM analysis clearly showed abscission zone formation after application of CICR Defoliant within 1 or 2 days of application. The cross-talk between hormones (Cytokinin and ethylene) was established in leaf abscission tissues induced by the chemical defoliant. The involvement of ABA hormone was validated in promoting abscission. The CICR defoliant simultaneously helps with boll opening and leaf defoliation. RNA Seq analysis study indicated up-regulation of abscission-related Genes/TFs associated with defoliation, such as SAG-39, ERF113, and Cytokinin dehydrogenase 3 etc. Defoliating leaf metabolite profiles had the presence of Caryophyllene, Cycloundecatriene, Diethyl Phthalate, Neophytadiene, Hexadecanoic Acid, Phytol, Squalene, Octadecatrienoic Acid etc. which may be involved in the induction of leaf senescence process. Defoliant treatment resulted in more than 90% boll opening after 7 days of application and more than 95 % opening after 14 days of application.



Field view of CICR defoliant foliar application on Bt cotton plants



Differentially expressed genes of key plant hormone post 24 Hrs of defoliant application.

### 3.11 Project Name: Phytohormone profiling by targeted metabolomics in Cotton (IXX15681)

PI: Pooja Verma

Co-PI: Joy Das

**Importance of the study:** The physiology of phytohormones has been a key emphasis for the advancement of agriculture since a plant hormone can affect crop output directly or indirectly by functioning as a plant-development controller or plant-environment mediator. Plant hormonomics; an approach for the collective estimation of major phytohormones with advanced LC-MS, HPLC, or GC combined with mass spectrometry (MS) has been successful in the targeted profiling of more than 100 phytohormones altogether in model plants like *Arabidopsis*. Building on this background, this study aims to develop a methodology for the rapid, sensitive, and simultaneous profiling of phytohormones in cotton. It will not only provide the quantitative snapshot of the physiological status of cotton tissues under stress and facilitate the correlation of fibre traits with the interplay of phytohormones in cotton.

#### Salient findings

A method was optimized for silylation (BSTFA, MSTFA and BSTFA+TMCS) and methylation (with MCF) in plant samples using SCAN as well as SIM mode of acquisition. Phytohormone profiling was performed using an optimized method in different cotton tissues (seedling, leaf, flower bud and flowers). Indole acetic acid (IAA), Indole Butyric acid (IBA), Isopentyl adenosine (cytokinin), Salicylic Acid (SA), Jasmonic acid (JA), Azelaic acid, Succinic acid, t-cinnamic acid, and Cis-cinnamic acid could be detected in cotton samples. More than 15 direct and indirect precursors and intermediates were also detected, such as ethyne, and Cyclopentane, 1- carboxylic acid, Benzoic acid (precursor of Salicylic acid), Hydroxy-benzoic acid (precursor of Salicylic acid), 2,4 Naphthalene/2,4 Naphthalinone, Phenoxy acetic acid, Decane, Undecane, Dodecane, Nonadecane etc., in different cotton tissues on GC-MS analysis with the method optimized under this study. On comparing the different methods of derivatization tested, BSTFA+1% TMCS was found to be better than others for detecting phytohormones (Table 3.11.1).

**Table 3.11.1: Comparison of different silylating and methylating agents for best detection of phytohormones**

| BSTFA                                                      | BSTFA+TMCS                                                                                                                             | Methyl chloroformate                                                                                  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Indole-3 acetic acid<br>Methyl salicylate<br>Succinic acid | Indole-3 acetic acid<br>Indole butyric acid (IBA)<br>L-Tryptophan                                                                      | Indole-3 acetic acid<br>Succinic acid<br>L-Tryptophan                                                 |
| Linolenic acid---Jasmonic acid                             | Isopentyl adenosine (iPR)<br>--Cytokinin                                                                                               | Azelaic acid                                                                                          |
| Linoleic acid---Jasmonic acid                              | Salicylic acid                                                                                                                         | t-cinnamic acid, Hydroxy cinnamic acid                                                                |
| Ephedrine, ephinephrine                                    | Azelaic acid<br>t-cinnamic acid<br>Linoleic acid---Jasmonic acid<br>Linolenic acid---Jasmonic acid<br>Xanthoxin....ABA<br>Nitric oxide | Linolenic acid---Jasmonic acid<br>Linoleic acid---Jasmonic acid<br>Salicylic acid<br>Xanthoxin....ABA |

### 3.12 Project Name: Microbially mediated abiotic stress tolerance in cotton (IXX17720)

PI: K. Velmourougane

Co-PIs: J.H. Meshram, Raghavendra K.P, J. Annie Sheeba

**Importance of the study:** Abiotic stress is the most important factor affecting cotton production because cotton is highly sensitive to moisture. Since Bt cotton hybrids occupy 98% of the total cotton cultivated, the problem of abiotic stress and its effects on cotton has become more serious as the root systems of Bt cotton are generally shallow, creating a moisture deficit compared to native cotton species. Abiotic stress causes nutrient deficiencies and physiological disorders and demands chemical osmo-protectants to protect

cotton from stress. Although several cotton growing countries are in the process of developing drought-tolerant cotton through conventional breeding and transgenic technologies, public acceptance of GM crops is still under question. Although bioinoculants are being explored for abiotic stress alleviation in crops, no studies are available on the use of native microbial consortia with relation to abiotic stress alleviation in cotton.

#### Salient findings

Based on the replicated field experiments with 7 treatments [Control, 75% STCR (soil test and crop response), 100% STCR, B4+B7+CSB (MC1)+75% STCR, B4+B7+310 (MC2) +75% STCR, B7+CSB+310 (MC3)+75% STCR, B4+B7+CSB+310 (MC4)+75%



STCR, and Salicylic acid + 100% STCR], the microbial consortia (MC4) significantly ( $p<0.05$ ) enhanced cotton growth, plant physiological parameters, plant defense and antioxidant enzyme activities, yield contributing attributes, soil nutrient availability, and soil biological

properties under normal (N, water-logging (WL), and drought (DR) conditions compared with other treatments. The microbial inoculation also decreased CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub> release and increased O<sub>2</sub> release compared with the control.

**Table 3.12.1 Abiotic stress and microbial treatments on yield and yield contributing parameters**

| Treatments             | Bolls (Nos.)       |                    |                    | Boll weight (g)    |                   |                   | SCY (kg/ha)        |                    |                    | Seed index (g)     |                    |                    | Lint index (g)    |                   |                    |
|------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|
|                        | N                  | W                  | D                  | N                  | W                 | D                 | N                  | W                  | D                  | N                  | W                  | D                  | N                 | W                 | D                  |
| Control                | 28.7 <sup>f</sup>  | 22.7 <sup>d</sup>  | 10.7 <sup>e</sup>  | 3.96 <sup>d</sup>  | 3.85 <sup>d</sup> | 2.78 <sup>d</sup> | 14.3 <sup>d</sup>  | 11.4 <sup>d</sup>  | 5.30 <sup>d</sup>  | 7.96 <sup>f</sup>  | 8.05 <sup>f</sup>  | 7.86 <sup>f</sup>  | 5.11 <sup>d</sup> | 5.24 <sup>c</sup> | 4.83 <sup>c</sup>  |
| 75% STCR               | 37.7 <sup>e</sup>  | 32.7 <sup>c</sup>  | 16.0 <sup>d</sup>  | 4.42 <sup>c</sup>  | 4.37 <sup>c</sup> | 3.27 <sup>c</sup> | 30.8 <sup>c</sup>  | 25.2 <sup>c</sup>  | 9.10 <sup>c</sup>  | 8.53 <sup>e</sup>  | 8.86 <sup>e</sup>  | 8.46 <sup>e</sup>  | 5.57 <sup>c</sup> | 5.60 <sup>b</sup> | 5.40 <sup>bc</sup> |
| 100% STCR              | 45.7 <sup>bc</sup> | 37.8 <sup>bc</sup> | 21.0 <sup>bc</sup> | 4.75 <sup>bc</sup> | 4.70 <sup>b</sup> | 3.40 <sup>b</sup> | 34.7 <sup>b</sup>  | 28.7 <sup>bc</sup> | 10.5 <sup>b</sup>  | 9.01 <sup>bc</sup> | 9.06 <sup>bc</sup> | 8.69 <sup>bc</sup> | 5.74 <sup>c</sup> | 5.91 <sup>b</sup> | 5.61 <sup>b</sup>  |
| B4+B7+CSB+75% STCR     | 42.3 <sup>cd</sup> | 39.0 <sup>b</sup>  | 20.7 <sup>bc</sup> | 4.70 <sup>b</sup>  | 4.62 <sup>b</sup> | 3.54 <sup>b</sup> | 34.4 <sup>b</sup>  | 31.8 <sup>b</sup>  | 10.2 <sup>bc</sup> | 9.04 <sup>cd</sup> | 8.91 <sup>cd</sup> | 8.66 <sup>cd</sup> | 5.65 <sup>c</sup> | 5.67 <sup>b</sup> | 5.58 <sup>b</sup>  |
| B4+B7+310+75% STCR     | 40.2 <sup>de</sup> | 37.1 <sup>bc</sup> | 19.7 <sup>c</sup>  | 4.79 <sup>b</sup>  | 4.65 <sup>b</sup> | 3.44 <sup>b</sup> | 33.9 <sup>bc</sup> | 31.7 <sup>b</sup>  | 10.1 <sup>bc</sup> | 8.88 <sup>de</sup> | 8.84 <sup>de</sup> | 8.68 <sup>de</sup> | 5.80 <sup>b</sup> | 5.69 <sup>b</sup> | 5.49 <sup>bc</sup> |
| B7+CSB+310+75% STCR    | 40.8 <sup>de</sup> | 38.1 <sup>bc</sup> | 20.3 <sup>bc</sup> | 4.76 <sup>bc</sup> | 4.63 <sup>b</sup> | 3.47 <sup>b</sup> | 34.2 <sup>b</sup>  | 31.4 <sup>b</sup>  | 10.3 <sup>b</sup>  | 8.87 <sup>de</sup> | 8.84 <sup>de</sup> | 8.67 <sup>de</sup> | 6.03 <sup>b</sup> | 5.59 <sup>b</sup> | 5.61 <sup>b</sup>  |
| B4+B7+CSB+310+75% STCR | 54.0 <sup>a</sup>  | 44.7 <sup>a</sup>  | 26.7 <sup>a</sup>  | 5.36 <sup>a</sup>  | 4.84 <sup>a</sup> | 3.91 <sup>a</sup> | 41.2 <sup>a</sup>  | 38.5 <sup>a</sup>  | 14.7 <sup>a</sup>  | 9.24 <sup>a</sup>  | 9.07 <sup>a</sup>  | 8.86 <sup>a</sup>  | 6.57 <sup>a</sup> | 6.27 <sup>a</sup> | 6.04 <sup>a</sup>  |
| SA + 100% STCR         | 47.0 <sup>b</sup>  | 40.0 <sup>ab</sup> | 23.0 <sup>b</sup>  | 4.89 <sup>b</sup>  | 4.74 <sup>b</sup> | 3.59 <sup>b</sup> | 35.4 <sup>b</sup>  | 31.6 <sup>b</sup>  | 10.8 <sup>b</sup>  | 8.99 <sup>b</sup>  | 8.83 <sup>b</sup>  | 8.66 <sup>b</sup>  | 6.02 <sup>b</sup> | 5.86 <sup>b</sup> | 5.73 <sup>b</sup>  |

STCR, Soil test crop response-based fertilizer recommendation; N, Normal rainfed condition; W, Waterlogging, D, Drought

### 3.13 Project Name: Bioprospecting microbial volatiles for the management of major foliar and root diseases of cotton (IXX17719)

PI: K. Velmourougane

Co-PIs: S.P. Gawande, D.T. Nagrale

**Importance of the study:** Cotton is vulnerable to several foliar and root diseases. Cotton farmers largely depended on conventional fungicides for managing these diseases along with a few biologicals and organic amendments. However, continuous and irrational use of these chemicals has resulted in resistance development in cotton pathogens. Microbial volatile organic compounds (mVOCs) represent a new frontier in bioprospecting, where they produce several complex and dynamic volatile compounds, which help in plant growth promotion and induct induced systemic resistance in crop plants. Although substantial advancement has been made in our understanding of mVOCs and their multifunctional roles in crop growth promotion, including biocontrol, we remain far from

implementing that knowledge under field conditions. Based on the above knowledge gap, we hypothesize that microbial volatiles may serve as a sustainable, cheaper, efficient, and ecofriendly alternative to synthetic fungicides to manage cotton foliar and root diseases.

#### Salient findings

Based on the replicated lab experiments with 12 bacterial-based volatiles (BHT, DBP, DCT, EC, HC, HDC, HTC, PD, PY, TC, TD, TPC) at 5 ppm concentration on N-acetylglucosamine (NAG) content (cell wall component of fungi) of major cotton pathogens, TC, HDC, HTC, PY, DBP, EC, and EC significantly ( $p<0.05$ ) reduced the NAG content of *Alternaria* (98%), *Fusarium* (33%), *Rhizoctonia* (78%), *Macrophomina* (306%), *Corynespora* (219%), *Sclerotium* (215%) and *Myrothecium* (22%), respectively, compared with the control. A significant positive correlation was also observed between the NAG concentration and fungal biomass of the evaluated cotton pathogens.

**Table 3.13.1 Bacterial-based volatiles on N-acetylglucosamine and fungal biomass**

| Pathogens           | Control |      | BHT |      | DBP |      | DCT |      | EC  |      | HC  |      | HDC |      |
|---------------------|---------|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
|                     | N       | F    | N   | F    | N   | F    | N   | F    | N   | F    | N   | F    | N   | F    |
| <i>Alternaria</i>   | 178     | 4.35 | 163 | 4.18 | 123 | 3.97 | 158 | 4.27 | 136 | 4.05 | 157 | 4.2  | 126 | 3.86 |
| <i>Fusarium</i>     | 220     | 4.26 | 209 | 4.08 | 186 | 3.87 | 196 | 4.12 | 162 | 3.76 | 216 | 3.92 | 162 | 3.62 |
| <i>Rhizoctonia</i>  | 195     | 5.02 | 186 | 4.35 | 172 | 4.15 | 176 | 4.56 | 153 | 4.68 | 182 | 4.67 | 146 | 3.43 |
| <i>Macrophomina</i> | 245     | 5.36 | 232 | 5.12 | 72  | 2.34 | 213 | 5.17 | 56  | 2.13 | 223 | 5.19 | 79  | 2.09 |
| <i>Corynespora</i>  | 224     | 5.73 | 217 | 5.28 | 68  | 2.17 | 196 | 4.23 | 186 | 5.27 | 203 | 5.43 | 73  | 2.12 |
| <i>Sclerotium</i>   | 268     | 5.68 | 146 | 5.27 | 86  | 2.39 | 227 | 5.27 | 72  | 2.23 | 221 | 5.32 | 149 | 5.17 |
| <i>Myrothecium</i>  | 236     | 5.27 | 224 | 4.89 | 194 | 4.27 | 215 | 4.86 | 176 | 4.93 | 206 | 4.76 | 186 | 4.69 |
| Control             |         | HTC  |     | PD   |     | PY   |     | TC   |     | TD   |     | TPC  |     |      |
| Pathogens           | N       | F    | N   | F    | N   | F    | N   | F    | N   | F    | N   | F    | N   | F    |
| <i>Alternaria</i>   | 178     | 4.35 | 143 | 3.23 | 168 | 4.03 | 162 | 4.12 | 82  | 2.42 | 156 | 4.09 | 149 | 3.52 |
| <i>Fusarium</i>     | 220     | 4.26 | 186 | 3.48 | 203 | 3.95 | 193 | 3.85 | 183 | 3.72 | 178 | 3.89 | 176 | 3.23 |
| <i>Rhizoctonia</i>  | 195     | 5.02 | 82  | 2.56 | 172 | 4.86 | 172 | 4.23 | 156 | 4.23 | 165 | 3.43 | 163 | 3.92 |
| <i>Macrophomina</i> | 245     | 5.36 | 93  | 2.48 | 211 | 4.82 | 52  | 2.07 | 206 | 4.53 | 63  | 2.19 | 79  | 2.32 |
| <i>Corynespora</i>  | 224     | 5.73 | 192 | 3.57 | 203 | 5.16 | 186 | 5.12 | 182 | 5.14 | 204 | 5.19 | 182 | 5.23 |
| <i>Sclerotium</i>   | 268     | 5.68 | 213 | 4.23 | 223 | 5.14 | 206 | 5.09 | 217 | 5.23 | 206 | 5.34 | 84  | 2.48 |
| <i>Myrothecium</i>  | 236     | 5.27 | 193 | 4.64 | 205 | 4.82 | 193 | 4.87 | 192 | 4.67 | 176 | 4.27 | 203 | 5.04 |

N, N-acetylglucosamine content in mg g<sup>-1</sup> dry weight basis; F, Fungal biomass in g dry weight basis



### **3.14 Project name: Targeting technologies to agro-ecological zones- large scale demonstrations of best practices to enhance cotton productivity**

**PL:** Y.G. Prasad

**PI:** A.S. Tayade

**Co-PIs:** Team of Scientists from ICAR-CICR, Nagpur, and two regional stations, Coimbatore and Sirsa

**Importance of Study:** With the objectives of increasing cotton productivity, three scalable technologies have been identified for technology targeting in identified agro-ecological zones: 1) High-density planting system in low-productivity areas with shallow soils with canopy, nutrient, and soil health management; 2) Closer Spacing planting system in medium productivity areas with medium deep soils under rainfed cotton ecosystem with canopy, nutrient and soil health management; and 3) Production technology for ELS cotton in niche areas under rainfed/irrigated farming situation.

#### **Salient findings**

The Ministry of Agriculture and Farmers welfare, New Delhi, a project entitled "Targeting Technologies to Agro-Ecological Zones: Large-Scale Demonstrations of Best Practices to Enhance Cotton Productivity," under the National Food Security Mission (NFSM) that was implemented in different cotton growing districts across the 8 major cotton growing states in Public-Private Partnership (PPP) mode. The project covered 65 districts across eight states, spanning 14,741.65 hectares and involving 17,251 farmers. Technological interventions such as HDPS (5777.12 ha and 5664 farmers), closer planting (7018.15 ha and 8937 farmers), and ELS cotton (1943.2 ha and 2650 farmers) were demonstrated. The outreach activities included 280 farmer trainings (21152 farmers), 145 field days (12453 farmers), 43 workshops (5180 farmers), and 13 Kisan Melas (10034 farmers). The project significantly increased cotton productivity in HDPS (50.71 to 73.00 %), CS (19.02 to 70.29%), and ELS (11.64-31.44%) over farmer's practice.

### **3.15 Project Name: Impact of denser planting systems on cotton productivity and farmers income**

**under rainfed conditions in India**

**PI:** Jaya Kumaravaradan, R

**Co-PIs:** Y.G. Prasad, Ramkrushna, G.I., A.S. Tayade, K. Sankaranarayanan

**Importance of the study:** ICAR-CICR promotes HDPS and Closer Spacing in cotton cultivation across India to improve cotton productivity. Hence, it is necessary to study the adoption patterns of these technologies among the farmers to reveal the advantages and constraints in adoption and to determine how far these two technologies have increased the productivity of cotton and income of farmers.

#### **Salient findings**

Traditionally, rainfed cotton farmers in the Siddipet district of Telangana adopted a Square Planting System (SPS) with a spacing of 90×90 cm, sowing 2 seeds per hill, resulting in 10,000 plants/acre and a yield of 8 q/acre. During the kharif 2024 season, 266 rainfed cotton farmers adopted HDPS. A survey was conducted among 50 respondents. HDPS adoption tripled the seed rate from 2 packets to 6 packets per acre. As a result, expenditure on seed increased by Rs.3456 and on labour for sowing by Rs.600 (Table 3.15.1). At the same time, the expenditure on row marking by bullocks decreased by Rs.1000, as there is no need for two-way marking in HDPS as in SPS. The number of bullock-drawn hoeing was halved from 8 times to 4 times as there is no scope for two-way hoeing in HDPS as done in SPS. This saved Rs.4000. Since PGR must be applied in HDPS to regulate vegetative growth, farmers incurred an additional expenditure of Rs.1200. On average, HDPS increased the yield of rainfed cotton by 4 q/acre from 8 q to 12 q. In order to harvest the additional 50% seed cotton yield, farmers must incur an additional expenditure of Rs.6000 on labour picking. Although farmers incurred an additional cost of Rs.11,256/acre in HDPS, this reduced the cost by Rs.5000 and resulted in an increased income of Rs.30,084. Thus, farmers have realized an additional return of more than Rs.3.00 for every rupee of added cost incurred in shifting from SPS to HDPS.



Interaction with a HDPS farmer



**Table 3.15.1. Partial budgeting of shifting from SPS to HDPS in rainfed cotton cultivation (Rs./acre)**

| Item                                     | Added cost<br>(1) | Reduced cost<br>(2) | Added return<br>(3) |
|------------------------------------------|-------------------|---------------------|---------------------|
| Seed                                     | 3,456             | -                   | -                   |
| Labour cost for sowing                   | 600               | -                   | -                   |
| Row marking                              | -                 | 1,000               | -                   |
| Hoeing                                   | -                 | 4,000               | -                   |
| PGR                                      | 1,200             | -                   | -                   |
| Labour for harvesting                    | 6,000             | -                   | -                   |
| Yield                                    | -                 | -                   | 30,084              |
| Total                                    | 11,256            | 5,000               | 30,084              |
| Incremental income (4) = [(2)+(3)] - (1) | 23,828            |                     |                     |
| MBCR (5) = [(2)+(3)]/(1)                 | 3.12              |                     |                     |

**3.16 Project Name: Crop-weed interactions under ambient and elevated CO<sub>2</sub>**

**PI:** Dr. P. Nalayini,

**Co-PI:** Dr AH. Prakash, Dr. M. Amutha, Dr. K. Sankaranarayanan

**Importance of the Study :** The global atmospheric CO<sub>2</sub> is already at 419 ppm and is projected to cross 550 and 700 ppm, respectively, by the middle and end of the twenty first century. Nitrogen management is cumbersome because of its high reactivity and mobility in soil. To avoid economic losses and environmental risks, N fertilizers should be utilized more efficiently in agriculture. Enhanced biomass and crop yield under eCO<sub>2</sub> results in inadequate N availability to sustain growth and needs to be addressed through integrated approach like split application of N, use of biologically fixed N (via legume N<sub>2</sub> fixation) by growing leguminous in situ cover crops, and direct application of N to crop through foliar nutrition for easy absorption by cotton crop. In the current climate change scenario, the sequestration of carbon in soils is imperative to increase the soil carbon pool and combat GHG emission.

**Salient Findings**

The open-top chamber (OTC) experiment was conducted at CICR regional station, Coimbatore in RBD with six treatments viz, soil application of recommended dose of N (RDN) at 0, 30, 60 and, 90 DAS under elevated CO<sub>2</sub> (eCO<sub>2</sub> ), Integrated Nitrogen Management (INM) under eCO<sub>2</sub> with two splits as soil application at 0, 30 DAS with sun hemp grown in situ and incorporated (45-60 DAS) plus foliar N (as nano urea at 60 and 90 DAS).

These two soils and INM treatments were compared under ambient OTC conditions and in an open field. The cotton crop cultivar, Suraksha responded positively to eCO<sub>2</sub> (550 ppm), with an average yield enhancement of 24 % over ambient. The INM under eCO<sub>2</sub> recorded the highest ( 3639 kg/ha) seed cotton yield (Fig 3.16.1) and was on par with soil application under eCO<sub>2</sub>. The enhanced dry matter accumulation of cotton crop under eCO<sub>2</sub> is evidenced from the crop growth rate of 17.2 - 20.9 g/m<sup>2</sup> /day during 90-120 DAS as against 9.9-10.5 g/m<sup>2</sup> /day under ambient condition. The growth of sunnhemp also was proliferous due to eCO<sub>2</sub> and accumulated the highest dry matter of 8.51 t/ha as against 4.7 t/ha under ambient. The sunnhemp grown under eCO<sub>2</sub> produced more nodules than under ambient conditions. Soil under eCO<sub>2</sub> could sequester more carbon than ambient soils, as revealed by the higher soil organic carbon content with eCO<sub>2</sub>. The organic carbon in soil was higher (0.63 %) under integrated N management than under soil application (0.50%). The N content in cotton plants on 95 DAS was 1.75 % under soil application and improved to 2.25 % in INM under eCO<sub>2</sub> (Table 3.16.1); thus, the N dilution effect could be addressed with INM under e CO<sub>2</sub>. The INM recorded higher soil available N in post-harvest soil besides enhanced seed cotton yield and hence advocated as a sustainable practice for cotton crops for yield enhancement, soil, and environmental health. Pest observation revealed that the aphids population was more under INM conditions, whereas the thrips were more under soil application.

**Table 3.16.1 Crop growth rate, plant N, root CEC, soil organic C and available N due to INM and e. CO<sub>2</sub>**

| Treatments                                            | CGR<br>(g/m <sup>2</sup> /day) | % Nitrogen in<br>cotton<br>( 95 DAS) | Root<br>CEC<br>(m.e/100g<br>roots) | %<br>organic<br>carbon in<br>soil | Soil Available<br>N(kg/ha) |
|-------------------------------------------------------|--------------------------------|--------------------------------------|------------------------------------|-----------------------------------|----------------------------|
| RDN soil application<br>(eCO <sub>2</sub> ) under OTC | 17.2                           | 1.75                                 | 11.12                              | 0.50                              | 177.8                      |



| Treatments                                     | CGR<br>(g/m <sup>2</sup><br>/day) | % Nitrogen in<br>cotton<br>( 95 DAS) | Root<br>CEC<br>(m.e/100g<br>roots) | %<br>organic<br>carbon in<br>soil | Soil Available<br>N(kg/ha) |
|------------------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|-----------------------------------|----------------------------|
| INM (e CO <sub>2</sub> under OTC               | 20.9                              | 2.25                                 | 14.63                              | 0.63                              | 189.7                      |
| RDN as soil application (Ambient)<br>under OTC | 9.9                               | 2.28                                 | 10.73                              | 0.40                              | 177.3                      |
| INM(Ambient)under OTC                          | 10.5                              | 2.31                                 | 12.87                              | 0.53                              | 186.7                      |
| RDN as soil application (open field)           | 9.1                               | 2.11                                 | 10.34                              | 0.44                              | 174.7                      |
| INM (open field)                               | 13.2                              | 2.18                                 | 12.87                              | 0.52                              | 186.2                      |
| CD (P= 0.05)                                   | 7.02                              | 0.49                                 | 1.97                               | 0.097                             | NS                         |

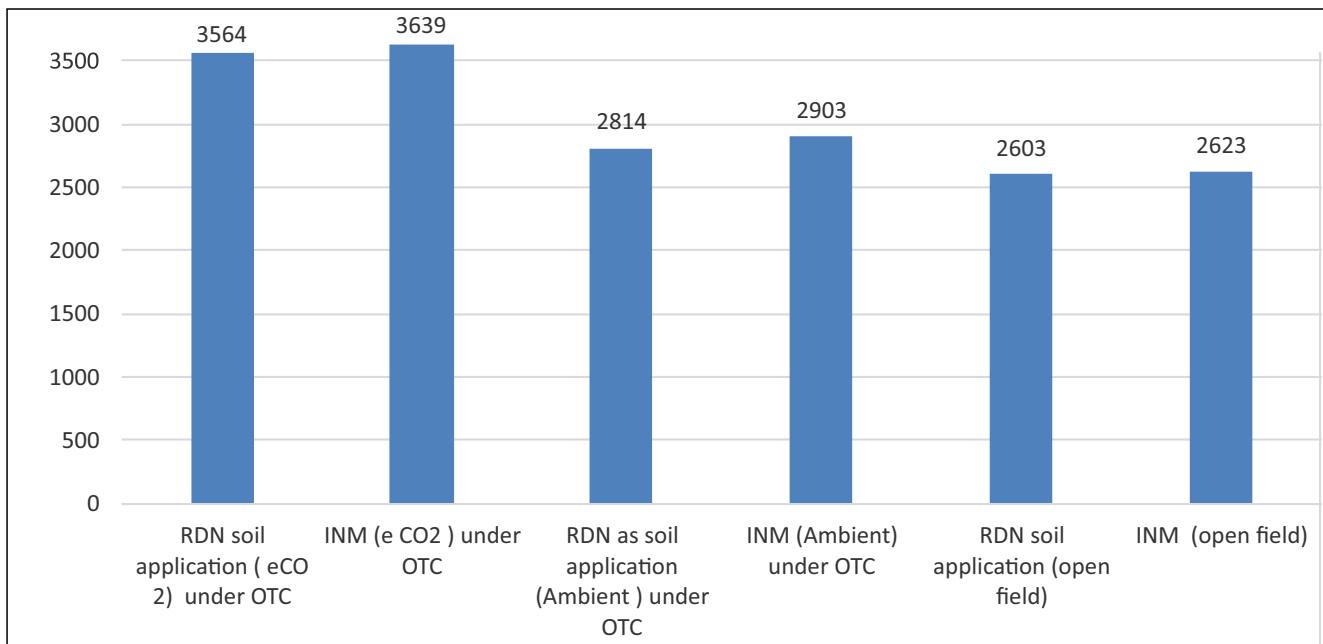



Fig 3.16.1 Seed cotton yield due to INM and eCO<sub>2</sub>



Fig.3.16.2 Cotton with sunhemp under eCO<sub>2</sub>



Fig.3.16.3 Efficient weed control under IWM ( eCO<sub>2</sub>)



Fig.3.16.4 Sunnhemp with clusters of nodules under eCO<sub>2</sub>



Fig.3.16.5 Integrated Nitrogen Management under eCO<sub>2</sub>

### 3.17 Project Name: Evaluating agro techniques for overcoming weather aberration of drought and water logging in cotton

PI: K. Sankaranarayanan

Co PIs: P. Valarmathi, J.H. Meshram

**Importance of the study:** Climate change has changed the rainfall pattern dramatically. The irregular and erratic distribution of rainfall is the result of climate change, resulting in wet and dry spells. Excess rainfall leads to water stagnation; however, in low-lying areas, drainage is not possible, leading to continuous water logging, which affects crop growth. Excess water in the rooting zone of plants due to flooding or seasonal heavy rainfall negatively affects their growth and development.

#### Salient Findings

- Drone spray using spray fluid @ 50 l/ha with salicylic acid @ 0.5mM single spray on the 5th Day after water logging and KNO<sub>3</sub> @ 2% on the 8th day after water logging and application of nitrogen and potassium each @ 20 kg/ha (after drainage) with ridges and furrow land configuration performed better, which was on par with the same package with drone spray using spray fluid @ 37.5 l/ha
- Water logging of continuous 15 days (Fig.3.17.1) significantly reduced 22.8 percent mean seed cotton yield (1290 kg/ha) as compared to control (1671 kg/ha)
- Less seed cotton yield reduction was reported with Sunanda by 15 days of water logging compared with other genotypes
- Plots receiving drone spray, treatments with @ 0.5mM single spray on the 5th Day after water logging and KNO<sub>3</sub> @ 2% on the 8th day after water logging with application of nitrogen and potassium each @ 20 kg/ha (after drainage) with ridges and furrow land configuration recorded less PDI for ALS is 8.4 (disease grade 1), Cercospora leaf spot with PDI of 4.3 (disease grade 1) and boll rot with 4.1 PDI (disease grade 1), higher total gossypol (0.27%), total soluble sugar (2.33%) and phenolics (1.23%) and less number of Jassid and jassid injury index.



Fig. No. 3.17.1 Field View of Water logging Stress

### 3.18 Project Name: Sustainable Intensification of Extra Long Staple Cotton Production in South Zone

PI: R. Raja

#### Importance of the study

Farmers preference of cultivating, high-yielding *intrahirsutum* Bt Hybrids in recent times has marginalized the cultivation of other cotton species, including extra long staple (ELS) cotton, in the Subcontinent. Despite of ELS cotton's considerable economic significance in the domestic and international markets, the low productivity of pure-line *barbadense* cultivars coupled with relatively higher susceptibility to pests and diseases and limited availability of H × B Bt hybrids led to a huge shortage in the domestic production of ELS cotton in our country. Hence, there is a felt need to increase the production and productivity of domestic ELS cotton through agronomic management practices in a sustainable manner in order to make it remunerative to ELS farmers as well as to increase the availability of ELS cotton fibre to the domestic textile industry. Field experiments are being conducted at the ICAR-CICR, Regional Station, Coimbatore, to study the effect of increased plant density and growth regulator use on the productivity of ELS cotton under the drip fertigation system.

#### Salient Findings

Improving ELS Cotton productivity through increased plant density, Canopy management and drip fertigation system

Increased plant density (90 x 15 cm; 74,074 plants/ ha) combined with drip fertigation and canopy management (Mepiquat Chloride application @ 60 ppm when height to node ratio (HNR) reached 1.5 followed by 30 ppm twice at 15 days interval after first spray) significantly enhanced the seed cotton yield of Suvin (1361 kg/ha) vis-a-vis farmers' practice (90 x 60 cm; 18,518 plants/ha; 874 kg/ha). Similarly, in the case of CICR B Cot 45, increased plant density (90 x 15cm; 74,074 plants/ ha) combined with drip fertigation and canopy management has produced higher seed cotton yield (1152 kg/ha) compared to farmers' practices (90 x 60 cm; 18,518 plants/ha; 832 kg/ha). The yield increase at higher plant density (90 x 15cm) was attributed to a significantly higher number of bolls per unit area vis-à-vis farmers practice (Table 3.18.1). Yield enhancement through increased plant density and plant growth regulator-based canopy management in *G. barbadense* genotypes indicated the possibility of machine harvesting of ELS cotton in near future.

#### Technology demonstration in farmer's field

The potential for yield enhancement through increased plant density (90 x 30 cm; 37,037 plants/ ha) combined with canopy management (Mepiquat Chloride application @ 60 ppm when height to node ratio (HNR) reached 1.5 followed by 30 ppm twice at 15 days interval after first spray) was demonstrated using the Suraksha variety at farmer's field (Sh. M. Manickam and Sh. V. Ponnusamy) at Kallampalayam village in Coimbatore

during kharif 2023 season. Adoption of the technology helped Sh. M. Manickam and Sh. V. Ponnusamy to

achieve seed cotton yields of 27.7 and 34.3 q/ha, respectively.

**Table 3.18.1 Effect of plant density, canopy management and drip fertigation on seed cotton yield of ELS varieties during Kharif 2023**

| Treatment                                                | Plant height (cm) at 150 DAS |          | No. of bolls m <sup>-2</sup> at harvest |          | Boll weight (g) |          | Seed cotton yield (kg ha <sup>-1</sup> ) |          |
|----------------------------------------------------------|------------------------------|----------|-----------------------------------------|----------|-----------------|----------|------------------------------------------|----------|
|                                                          | Suvin                        | B Cot 45 | Suvin                                   | B Cot 45 | Suvin           | B Cot 45 | Suvin                                    | B Cot 45 |
| T <sub>1</sub> : 90 × 60 cm + Fertigation                | 103.5                        | 93.2     | 23.7                                    | 17.2     | 2.7             | 2.3      | 874                                      | 832      |
| T <sub>2</sub> : 90 × 30 cm + Fertigation                | 98.1                         | 96.9     | 40.5                                    | 48.1     | 2.9             | 2.9      | 1191                                     | 981      |
| T <sub>3</sub> : 90 × 15 cm + Fertigation                | 96.9                         | 111.9    | 89.4                                    | 72.1     | 2.8             | 2.6      | 1361                                     | 1152     |
| T <sub>4</sub> : 120 × 25cm + Fertigation                | 90                           | 93.9     | 40.7                                    | 54.4     | 2.8             | 2.2      | 713                                      | 851      |
| T <sub>5</sub> : 120 × 15 cm + Fertigation               | 86.4                         | 94.4     | 63.7                                    | 79.3     | 3.1             | 2.5      | 725                                      | 700      |
| T <sub>6</sub> : 120 × 10 cm + Fertigation               | 84.4                         | 86.5     | 83.3                                    | 87.1     | 2.6             | 2.3      | 813                                      | 863      |
| T <sub>7</sub> : Farmer's practice (90 × 60 cm in R & F) | 112.1                        | 109      | 29.9                                    | 42       | 3.2             | 2.1      | 690                                      | 534      |
| SEd                                                      | 11.23                        | 7.81     | 14.68                                   | 11.44    | 0.38            | 0.54     | 273.6                                    | 237.8    |
| CD (P=0.05)                                              | NS                           | NS       | 31.99                                   | 24.92    | NS              | NS       | NS                                       | NS       |

### 3.19 Project Name: Active Optical Sensors based Yield Prediction in Cotton and Crop Canopy Management using Unmanned Aerial System

**PI:** R. Raja

**Co-PIs:** D Kanjana and T. Arumuganathan, PS (FMP), ICAR-SBI, Coimbatore

**Importance of the study:** The advent of Unmanned Aerial Vehicle (UAV) technology combined with image data analytics provides promising precision agriculture solutions like creation of spatial maps of fields, operational monitoring of crop conditions, evaluation of germination, spraying of agrochemicals, and prediction of crop yields, etc. An attempt was made (a) to use the vegetative indices derived from drone-based multispectral imaging for seed cotton yield prediction and (b) to evaluate the usefulness of chemical spraying UAV for application of plant growth regulating chemical like mepiquat chloride (MC) for canopy management in cotton under HDPS.

#### Salient Findings

The multispectral images obtained from gradient level nitrogen experimental plots using a Mica Sense Red Edge multispectral camera mounted on a DJI Inspire-I drone and a DJI Phantom 4 Multispectral imaging system during kharif seasons were processed using Agisoft Metashape Professional Software, and vegetation indices like Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE), were worked out. QGIS 3.18 software was used to extract plot-wise NDVI and NDRE data in tabular format. A seed cotton yield prediction model was developed using multiple regression analysis:

$$YP = -510.92 + 9551.34X1 + 10614.17X2$$

where, YP = Predicted yield; X1 = NDRE at 60 days after emergence and X2 = NDRE at 90 days after emergence. The derived model exhibited a coefficient of determination (R<sup>2</sup>) value of 0.82 and coefficient of multiple correlation (R) value of 0.91, indicating a very strong correlation between the predicted and observed seed cotton yields.

#### Cotton Canopy Management using an Unmanned Aerial System

An attempt was made to evaluate MC application for canopy management in cotton using chemical spraying UAV in cotton cv Suraksha planted with 90 × 10cm spacing during kharif 2023 at ICAR-CICR Regional Station, Coimbatore. The treatments involved were application of the recommended dose of MC on an a.i. basis using a Knapsack sprayer (T1) and Boom sprayer (T2- Fig 3.19.1), respectively, application of the recommended dose of MC on an a.i. basis mixed in 20 (Fig 3.19.2) and 30 litre spray fluid (water)/ acre, respectively, using chemical spraying UAV (T3 & T4), and no MC spray (Control - T5). The recommended dose of MC application of 60 ppm when the height-to-node ratio reaches 1.5 followed by 30 ppm twice at 15-day intervals (need based) after the first spray. The results indicated that application of the recommended dose of MC mixed in 20 litre spray fluid/acre using chemical spraying UAV produced an optimal plant architecture with an 87.9 cm plant height, 17 sympodial branches, 71.7 bolls m<sup>-2</sup>, and 3.5g boll weight at harvest. No significant difference in seed cotton yield was observed among the treatment groups. The results indicate that the UAV system can be used in cotton for



the application of a chemical topping agent under HDPS for canopy management.



Fig no. 3.19.1 : Application of mepiquat chloride using Boom sprayer



Fig no. 3.19.2 : Application of mepiquat chloride using chemical spraying drone

### 3.20 Project Name: Effect of longterm application of organic and inorganic sources of nutrients on continuous cultivation of Bt and non Bt cotton cropping system under irrigated conditions

**PI:** D. Kanjana

**Co PI:** K. Sankaranarayanan, Amarpreet Singh

**Importance of the study:** Nutrient balance study has significant role in adopting appropriate fertilizer management strategies for sustaining the production and productivity of cotton-maize cropping system under irrigated conditions.

#### Salient Findings

Soil nutrient balance was calculated after five years continuous adoption of cotton-maize cropping system under irrigated conditions. Among the cotton-maize cropping systems, the expected nutrient balance (ENB) of all major nutrients like N, P, and K, was positive, which ranged from 211.7 to 278.2 kg ha<sup>-1</sup> of N, 44.9 to 62.0 kg ha<sup>-1</sup> of P and 487.1 to 752.3 kg ha<sup>-1</sup> of K but the apparent nutrient balance (ANB) of N (-21.8 to -88.2 kg ha<sup>-1</sup>) and P (-14.3 to -24.2 kg ha<sup>-1</sup>) was negative, except for K (143.7 to 351.3 kg ha<sup>-1</sup>). This means the availability of N and P nutrient content in the soil was decreased after completion of the cotton – maize cropping sequence due to higher yields and biomass of cotton and maize crops, and the nutrient uptake rate was also

higher under continuous cotton – maize cropping system.

Among the different fertilization, the expected nitrogen balance showed a positive sign (124.5 to 353.6 kg ha<sup>-1</sup>) but the apparent nitrogen balance was negative (-72.3 to -151.6 kg ha<sup>-1</sup>) except control (51.4 kg ha<sup>-1</sup>) and the higher negative value was noticed in organic source of nutrients application (-151.6 kg ha<sup>-1</sup>) compared to other treatments. This indicates that total nitrogen uptake by cotton and maize crop was lesser than nutrient applied in organic nutrient treatments. Regarding the phosphorous balance in the soil, a positive sign was present in the expected phosphorus balance for all the treatments (60.8 to 78.2 kg ha<sup>-1</sup>) except control (-10.1 kg ha<sup>-1</sup>) and the negative sign was present in the apparent phosphorus balance for all the treatments (-23.4 to -37.8 kg ha<sup>-1</sup>) except control (33.5 kg ha<sup>-1</sup>). In the control treatment, the expected phosphorus balance was negative because there was no external source of phosphorus application, but the positive clear phosphorus balance might be due to a negative expected P balance.

The potassium balance under the cotton-maize cropping system was positive for both the expected (544.7 to 684.5 kg ha<sup>-1</sup>) and apparent balance (149.5 to 337.4 kg ha<sup>-1</sup>) but the only difference was the reduction of apparent potassium balance due to the higher available potassium nutrient content of the soil.

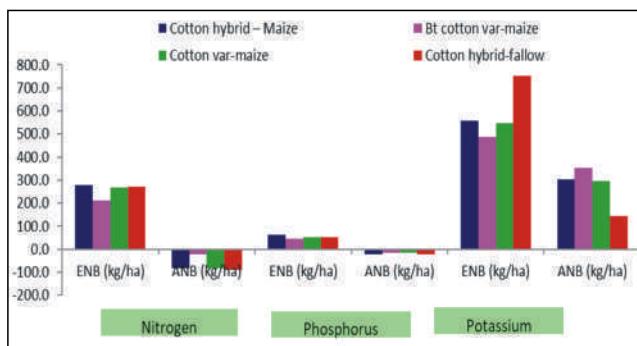



Fig 3.20.1 Expected nutrient balance (ENB) and Apparent nutrient balance (ANB) under different types of cotton-maize cropping system

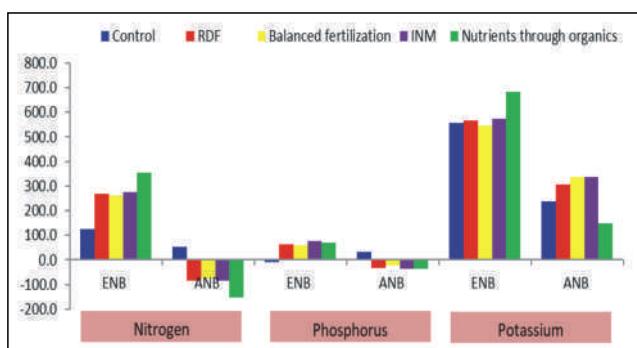



Fig 3.20.2. Expected nutrient balance (ENB) and Apparent nutrient balance (ANB) of cotton-maize cropping system under different sources of nutrients

### 3.21 Project Name: Formulation of customized fertilizers for cotton

PI: D. Kanjana

Co PI: R. Raja, Usha rani

**Importance of the study:** To achieve balanced nutrition, enhance fertilizer use efficiency, realize the full yield potential in crops, and sustain farm profitability under different soil conditions, custom made fertilizers ie., customized fertilizers/ multi nutrient-carriers are needed by cotton growers.

#### Salient Findings

A smooth and uniform surfaced fertilizer pellet was produced based on a soil test crop response approach for basal fertilizer application that contained macro, secondary, and micronutrients along with microorganisms. Similarly, smooth and glossy-surfaced fertilizer pellets were developed for top dressing application. Good compatibility was found between the binding material and combined form of macro, secondary, and micronutrients along with bio fertilizer by observing the positive impact on cotton growth and yield parameters. Seed cotton yield increased by 24.6 per cent due to application of fertilizer in pellet form based on the STCR approach as compared to normally recommended fertilizer in powder form.

### 3.22 Project Name Efficacy evaluation of nano-ZnO as nano-fertilizer in cotton (ICAR –CIRCOT Project)

PI: N. Vigneshwaran, Principal Scientist (CIRCOT)

Co PI: D. Kanjana

**Importance of the study:** The most essential micronutrient for cotton production is zinc, which can be used to increase cotton productivity by enhancing the

efficiency of zinc use via seed treatment and foliar application rather than through soil. Hence, the newly synthesized (ICAR-CIRCOT) ZnO NP's and their optimum dosage will be evaluated in cotton under field experiments along with commonly used zinc fertilizers like zinc sulphate and chelated Zn.

#### Salient Findings

The highest number of sympodial branches per plant (31.3), number of opened bolls per plant (34.3), boll weight (3.5 g/boll), and seed cotton yield (3582 kg/ha) were achieved by foliar application of chelated Zn (Zn EDTA) @ 0.2 % at two different critical stages of cotton (45 & 60 DAS), followed by generally sprayed ZnSO<sub>4</sub> @ 0.5 %. Similarly, seed treatment of ZnO NP's @ 20 ppm and combined application of seed treatment of ZnO NP's @ 20 ppm + Foliar spray of ZnO NP's @ 200 ppm at two stages (45 & 60 DAS) significantly increased the seed cotton yield (2481 and 2422 kg/ha respectively) which was more or less on par with generally sprayed ZnSO<sub>4</sub> @ 0.5 % (2735 kg/ha) and Nano Zn Suspension @ 200 ppm (2197 kg/ha). Performance of seed treatment of ZnO NP's @ 20 ppm and combination of seed treatment of ZnO NP's @ 20 ppm + Foliar spray of ZnO NP's @ 200 ppm were almost equal with foliar application of ZnSO<sub>4</sub> @ 0.5 % and Zn EDTA@ 0.2 % on improving the shoot parameters viz., plant height, leaf area index, SPAD chlorophyll value, shoot fresh weight, root parameters like root length, root volume and root fresh weight, physiological parameters viz., total chlorophyll, total nitrogen, nitrate reductase activity and biochemical parameters viz., total phenol and total soluble protein content and yield parameters of cotton. The seed treatment of ZnO nanoparticle @ 20 ppm was more efficient for increasing the cotton productivity as compared to other Zn sources and application methods.

Table 3.22.1 : Effect of Nano Zn on seed cotton yield

| T.No           | Treatments                                                                                                 | No. of sympodial branches /plant | No. of Opened bolls /plant | Boll wt (g/boll) | Seed cotton yield (kg/ha) |
|----------------|------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------------|---------------------------|
| T <sub>1</sub> | Control (Water spray)                                                                                      | 23.0                             | 21.9                       | 2.5              | 1637                      |
| T <sub>2</sub> | Seed treatment of ZnO NP's @ 20 ppm                                                                        | 26.0                             | 24.7                       | 3.4              | 2481                      |
| T <sub>3</sub> | Seed treatment of ZnO NP's @ 20 ppm + Foliar application of ZnO NP's @ 200 ppm at two stages (45 & 60 DAS) | 27.6                             | 27.3                       | 3.0              | 2422                      |
| T <sub>4</sub> | Foliar application of Nano Zn Suspension@ 200 ppm (45 & 60 DAS)                                            | 24.3                             | 23.7                       | 3.1              | 2197                      |
| T <sub>5</sub> | Foliar application of ZnSO <sub>4</sub> @ 0.5 % (45 & 60 DAS)                                              | 30.6                             | 30.8                       | 3.0              | 2735                      |
| T <sub>6</sub> | Foliar application of chelated Zn (Zn EDTA) @ 0.2 % (45 & 60 DAS)                                          | 31.3                             | 34.3                       | 3.5              | 3582                      |
|                | CD (0.05)                                                                                                  | NS                               | NS                         | 0.49*            | 1043.2*                   |

### 3.23 Project Name: Development of a nutrient and plant hormone- enriched foliar formulation for cotton

PI: J. Annie Sheeba

Co-Pls: D. Kanjana

**Importance of the study:** A large percentage (66 to 75 %) of the yield is produced on first-position fruiting sites. Hence, the retention and maturation of these bolls are critical. The use of PGRs may increase boll retention at the first fruiting site, enhance and accelerate crop



maturity, promote an earlier harvest, improve lint quality, and potentially alter membrane properties associated with enhanced tolerance to deviation in temperature. With this background, this project aims to develop a foliar formulation of nutrients and hormones that combine nutrients and plant hormones.

#### **Salient Findings:**

Fifteen treatment combinations were tested in cotton variety to determine the effective combination of hormones and nutrients for improving the productivity of cotton variety Suraksha under field conditions. Among the different treatments, higher N and chlorophyll contents were recorded by T11: Urea (1 %) + MAP (0.5 %) + KCl (0.5%) + Mg SO4 (0.5 %) + Ferrous Sulphate (0.25 %) + Zinc Sulphate (0.25 %) + Boric Acid (0.1 %) + NAA (20 ppm) + CuSO4 (0.05 %) + Sodium molybdate (0.01%) + Na-EDTA 0.02 mM + Salicylic acid (50 ppm) + Ascorbic acid (100 ppm) + Kinetin (20 ppm) + APSA 80. Higher yield of 2114 kg/ha was recorded by a combination of DAP (1% , micronutrients, and hormones + Triton X 100.

#### **3.24 Project Name: Identification and characterization of germplasm lines and advanced breeding lines with higher photo synthetic efficiency and harvest index for better yield in cotton**

**PI:** J. Annie Sheeba

**Co-PIs:** D. Kanjana

**Importance of the study:** The source sink relationship between main stem leaf, subtending leaf and developing boll plays an important role in determining the yield of cotton, advanced breeding lines with high photosynthetic efficiency and harvest index helps in increasing the productivity of cotton.

#### **Salient Findings:**

In order to assess the source-sink relationship in cotton, an experiment was conducted to assess the effect of removal of subtending leaves at flowering and 15, 30, and 45 DAF on boll weight and other quality parameters of Advanced Breeding Lines (ABL) of cotton. The results revealed that the influence of subtending leaf removal on boll weight is varied between Advanced Breeding Lines. The boll weights of Suraksha and 15 7-6-9-4 were least affected by subtending leaf removal. In another experiment, the main stem leaves were removed to assess the cotton yield. The removal of main stem leaves at 45 DAS did not affect the yield of Suraksha, but did affect the yield of Suvin and RCH659.

#### **3.25 Project Name: Efficient resource allocation patterns for cotton farms in Tamilnadu – Fuzzy goal programming approach**

**PI:** Isabella Agarwal

**Co PI:** R. Vasantha, TNAU, Coimbatore

**Importance of the Study:** A critical examination from a scientific point of view is necessary to evolve optimal

agricultural production patterns. Certainly, there is need to change the crop cafeteria to suit the ecology and the consumers' preference before initiating a shift in the crop. An effort was made in this study to suggest optimum cropping plans with minimum cost for cotton-based cropping systems in Tamil Nadu, where cotton is the main crop along with other subsidiary crops. Plans are being developed for average small, medium, and large farms, with the objective of minimization of the cost of cultivation from the available resources of land, labour (male, female, bullock pair), irrigation and capital. This study is based on farmers' data on cost of cultivation of prevalent crops in the region. It would be worthwhile to evaluate the relationship between acreage and value and use this to plan future actions and make the most of agricultural assets, outputs and markets.

#### **Salient Findings**

- Eight districts from five agroclimatic zones were selected for the study. A two-way classification was performed by considering farm size and irrigation status. During 2023-24, Coimbatore district was taken up for the study. Through purposive stratified sampling, 68 rainfed farmers, 32 partially irrigated farmers, and 20 irrigated farmers were considered for the study.
- Rainfed cotton in the optimal plan derived through the fuzzy goal programming model has registered an increase of 101.92%, 53.09% area in small and medium rainfed farms, respectively, over the existing plan.
- Among the large rainfed farms, the rainfed cotton has registered an increase of 28.75% and 51.13%, respectively, among the irrigated farms.
- Cotton, Bhendi, Chillies, Brinjal, Maize, Sorghum, Sugarcane, Tomato, Banana were the major crops grown in the sample blocks under the study in Coimbatore district under irrigated conditions and Cotton, Sorghum, Blackgram, Greengram, Redgram, Groundnut, Gingelly, and Bengal gram under rainfed conditions.
- The optimal plan derived from the fuzzy goal programming model registered an increase in the area under rainfed and irrigated cotton to the tune of 18.95% and 24.63 %, respectively.
- At the block level, an increase of 27 to 36% under rainfed conditions and 6.1 to 65 % of cotton area under irrigated conditions and at the regional level as a whole, 18.95 % area under the rainfed cotton and 24.63 % area increase under irrigated conditions were derived from the optimal plan through fuzzy goal programming approach.
- Among the blocks under study, there is a possibility of enhancing the cotton area under irrigated and rainfed conditions, except in Annur, where an irrigated cotton area is not suggested as per the optimal plan.



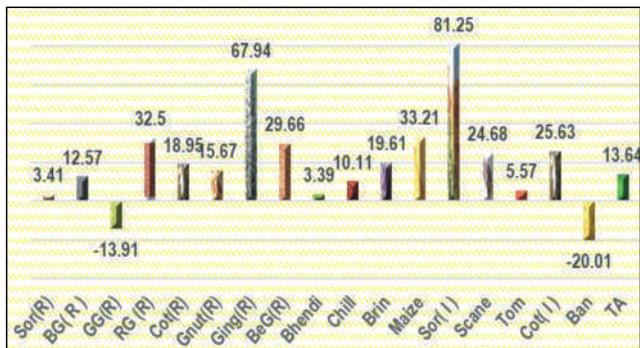



Fig 3.25.1 Change in allocation of crop area under optimal plan Vs Existing Plan (%)

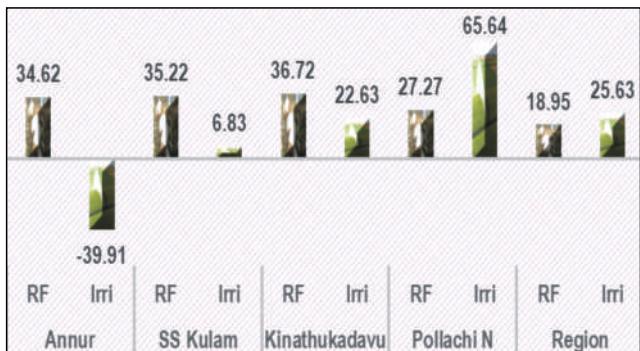



Fig 3.25.2. Block-wise allocation of cotton area and profitability under optimal Vs Existing Plan (%)

### 3.26 Project Name: Awareness and extension services on best farm practices for cotton farmers to improve quality, yield and sustainability

**PI:** Y. G. Prasad (Project Leader), S. Usha Rani (PI)

**Co-PIs:** A. Sampath kumar, A.H. Prakash, M. Sabesh, Arjun S Tayade, G I Ramakrushna, A Manikandan, Jaya Kumara Varadan, S.K. Sain and Amarpreet Singh

**Importance of the Study:** Low cotton production disrupted the supply chain and led to an unprecedented increase in the sale price of raw cotton and its cascading adverse effect on the cotton value chain. Several location-specific best practices and technologies and sound advisories/extension services are available with the research and development system that should reach a large number of smallholder cotton farmers in the country. Efforts to transform climate-sensitive cotton production to a climate-resilient production system is an immediate priority to prevent the recurrence of such disruption in cotton supply and make available quality cotton for domestic consumption by the cotton-based textile sector. Hence, an attempt has been made as a

pilot study sponsored by Cotton Corporation of India with a budget outlay of 2.53 crore Indian rupees to improve the yield sustainability through demonstration of the Best Farm Practices (BFPs), establishment of action learning field sites and field demonstrations with appropriate extension backstopping by Best Extension Practices (BEPs) through the development of Information Education and Communication (IEC) products and dissemination through personalized extension services through ICAR-CICR, ICAR-AICRP centres, ICAR-CIRCOT, ICAR-CIAE and CCI.

#### Salient findings

To demonstrate the BFPs, a total of 421 demonstrations on BFPs were conducted in 632 farmers' fields on CLCuV-tolerant Bt hybrids, drip fertigation, desi varieties/hybrids, crop establishment, BFPs on processing, IPM, IDM, H x B ELS cotton varieties/hybrids, High Density Planting System, Intercropping, Nutrient Expert, Poly mulching + canopy management, Integrated Crop Management, and Organic Cotton. A total of 81 stakeholder consultation and interface meetings were conducted with 3507 beneficiaries in convergence mode, involving various stakeholders. 13731 farmers benefited from the training programs (178) conducted in 11 cotton-growing states on cotton production technologies. 24 Special programs on cotton post-harvest technologies were organized by ICAR-CIRCOT, Mumbai, and ICAR-CIAE, Bhopal to 1184 farmers. 14 Farm Field Schools (FFS) and one FFS on All India Radio were conducted with 93 technical sessions for 520 beneficiaries. To develop IEC products and disseminate them to farmers and stakeholders, a total of 135 knowledge products in the form of leaflets, folders, pamphlets, booklets, technical bulletins, technical brochures, books, Gingles, podcasts, and 31 video clippings were developed in English and vernacular languages. To facilitate personalized extension services, 517 contents were developed for sending voice advisories on cotton. A total of 9713016 voice advisories were sent to 587582 beneficiaries during the project period. Eighty-two success stories were documented for replication of the project activities shortly in the non-project areas. Diffusion of BFP in cotton using BEP in all three agroclimatic zones sustainably increased the seed cotton yield from 225 kg to 2100 kg per hectare in a sustainable manner and brought desirable changes in the knowledge augmentation of cotton growers.



**Table 3.26.1 Details on state/district-wise technologies and BFPs demonstrated and their performance in terms of yield**

| S. No             | State          | Centres                                        | Districts                  | Area ha | Technologies demonstrated (number of demonstrations)                                                                       | Performance of the technologies in terms of yield |                                           | Yield advantage in terms of kg/ha percentage in parenthesis |
|-------------------|----------------|------------------------------------------------|----------------------------|---------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
|                   |                |                                                |                            |         |                                                                                                                            | Average SCY in the Demonstration                  | Average SCY obtained with local practices |                                                             |
| 1                 | Punjab         | PAU, Faridkot & Bathinda and CCI               | Bathinda, Faridkot         | 35      | CLCuV tolerant t Bt Hybrids (35)                                                                                           | 1825                                              | 1600                                      | 225 (14.06)                                                 |
| 2                 | Haryana        | ICAR-CIICR RS Sirsa, ICAR-CIRCOT, Mumbai & CCI | Sirsa, Hisar               | 35      | Desi varieties / hybrids (15)<br>Drip Fertigation (5)<br>Crop establishment (gap filling using the existing moisture) (10) | 2470                                              | 1710                                      | 760 (44.44)<br>1160<br>980<br>950 (96.93)                   |
| 3                 | Rajasthan      | MPUAT, Banswara                                | Banswara                   | 10      | Integrated pest and disease management (10)                                                                                | 2953                                              | 2286                                      | 667 (29.17)                                                 |
| 4                 | Gujarat        | NAU, Surat and CCI                             | Surat                      | 09      | HDPS (6)<br>Drip Fertigation (3)                                                                                           | 1965                                              | 1700                                      | 265 (14.58)<br>805 (47.35)                                  |
|                   |                | NAU, Bharuch                                   | Bharuch                    | 08      | HDPS (6)<br>Drip Fertigation (2)                                                                                           | 2505                                              | 1870                                      | 501 (26.79)<br>1870<br>1545(82.62)                          |
| 5                 | Maharashtra    | ICAR-CIICR, Nagpur ICAR-CIRCOT, Mumbai & CCI   | Nagpur, Panjari and Wardha | 25      | HDPS (10)<br>Intercropping (5)<br>Nutrient Expert (5)                                                                      | 2371<br>2135<br>1580<br>3022                      | 1450<br>1385<br>2545                      | 685 (47.24)<br>195 (14.07)<br>477 (18.74)                   |
|                   |                |                                                |                            | 12      | Poly Mulching+ canopy management (12)                                                                                      | 2704                                              | 2131                                      | 573 (26.88)                                                 |
| PDKV, Akola & CCI | Akola          |                                                |                            | 20      | HDPS (12)<br>ICM (8)                                                                                                       | 2578<br>2297                                      | 1954<br>1924                              | 678 (34.69)<br>373 (19.38)                                  |
|                   |                | VNMKV, Nanded & CCI                            | Nanded                     | 20      | HDPS (10)<br>Intercropping (10)                                                                                            | 1335<br>1312                                      | 1061<br>1114                              | 274 (24.82)<br>198 (17.77)                                  |
| 6                 | Madhya Pradesh | JNKVV, Khandwa and CCI                         | Mandla, Khandwa            | 20      | Organic Cotton (2)<br>ELS cotton H x B (10)<br>ICM Cotton (8)                                                              | 1660<br>1520<br>1515                              | 1115<br>1165<br>1161                      | 545 (48.87)<br>375 (32.18)<br>354 (30.49)                   |

| S. No | State          | Centres                                                                               | Districts                     | Area ha | Technologies demonstrated (number of demonstrations)                        | Performance of the technologies in terms of yield |                                           | Yield advantage in terms of kg/ha percentage in parenthesis |
|-------|----------------|---------------------------------------------------------------------------------------|-------------------------------|---------|-----------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
|       |                |                                                                                       |                               |         |                                                                             | Average SCY in the Demonstration                  | Average SCY obtained with local practices |                                                             |
| 7     | Orissa         | OUAT, Bhawanipatna and CCI                                                            | Kalahandi Bhawanipatna        | 50      | ICM on Cotton (20)<br>Intercropping (25)<br>Organic Cotton (5)<br>HDPS (20) | 1623                                              | 1366                                      | 257 (18.81)                                                 |
| 8     | Andhra Pradesh | ANGRAU, Guntur & CCI<br>AGNRAU, Nandyal<br>PJTSAU, Warangal & CCI<br>PJTSAU, Adilabad | Guntur<br>Nandyal<br>Warangal | 20      | HDPS (20)<br>Closer Spacing demo in medium soils (15)                       | 1678                                              | 1423                                      | 255 (18.00)                                                 |
| 9     | Telangana      |                                                                                       |                               | 15      | 2450                                                                        | 1264                                              | 1028                                      | 236 (23.00)                                                 |
|       |                |                                                                                       |                               |         |                                                                             | 2667                                              | 2310                                      | 357 (14.45)                                                 |
|       |                |                                                                                       |                               |         |                                                                             |                                                   |                                           |                                                             |
| 10    | Karnataka      | UAS, Dharwad & CCI<br>UAS, Bangalore & CCI                                            | Dharwad<br>Chamarajanagar     | 22      | HDPS in light soils (10)<br>ICM (10)                                        | 1750                                              | 1500                                      | 250 (16.6)                                                  |
|       |                |                                                                                       |                               |         |                                                                             | 2450                                              | 1900                                      | 550 (29.00)                                                 |
| 11    | Tamil Nadu     | ICAR-CIICR, Coimbatore & CCI<br>ICAR-CIRCOT, Virudhunagar                             | Coimbatore<br>Virudhunagar    | 45      | HDPS (20) Rainfed                                                           | 2125                                              | 1750                                      | 375 (21.42)                                                 |
|       |                |                                                                                       |                               |         |                                                                             | 3550                                              | 1450                                      | 2100 (1.4-fold)                                             |
|       |                |                                                                                       |                               |         |                                                                             | 2923                                              | 2358                                      | 565 (24)                                                    |
|       |                |                                                                                       |                               |         |                                                                             | 1860                                              | 1602                                      | 198 (12.35)                                                 |
|       |                |                                                                                       |                               |         |                                                                             | 2050                                              | 1641                                      | 409 (24.00)                                                 |
|       |                |                                                                                       |                               |         |                                                                             | 1850                                              | 1480                                      | 370 (24.00)                                                 |



### 3.27 Project Name: Technology impact and need assessment to address productivity, sustainability and climate change

PI: S. Usha Rani

Co-PIs: J. Annie Sheeba, M. Amutha

**Importance of the study:** Production, processing, technology transfer, value addition, and marketing technologies play a vital role in sustaining a nation's cotton production scenario in terms of area and production at the world level. The global cotton sector faces top three challenges related to climate change, sustainability, and productivity and the Indian cotton sector is no exception. Sustainability-related issues like usage of water, labour, agrochemicals, soil nutrients, and gender in Indian cotton cultivation and attaining sustainable development goals call for responsive cotton production in our country. Negative effects of climate change like water shortage, rise in temperature, heat waves, drought/heavy rains, insect pest outbreaks, rising ocean levels, shrinking glaciers, and loss of biodiversity impacts cotton production. Despite these challenges, Indian cotton production sectors face another major challenge, namely low productivity, which is around 500 kg lint/ha and less than the world average for many years. Assessing the impact of available technologies with Indian Cotton Research and Development sectors that significantly address all these challenges and the exact technological needs of end users to address these challenges in the cotton sector is need of hour. Since new technology and technological changes offer possibilities for any sector, an attempt has been planned to understand the technological needs of Indian cotton sector through the technology impact and need assessment.

#### Salient findings

The project has the objectives of assessing the impact created by promising technologies of ICAR-CICR and analyzing various factors responsible for full, partial, and non-adoption of these technologies and identifying the prospective and prioritized future technologies to be invented/imported for sustainable, climate-resilient, and high yielding cotton farming. During the year, the technologies available in ICAR-CICR and ICAR-AICRP on Cotton were documented using secondary sources. Technologies such as Cotton Variety 'Surabhi', HDPS, IPM, and e-Kapas were selected based on the experts' opinions and reviews. Historical track of the selected technologies was documented. The data collection tools viz., semi-structured interview schedules/case study

templates for assessing the adoption pattern and impact of the selected technologies, and data are being collected using the semi-constructed interview schedules and case study templates.

### 3.28 Project Name: Development of web-based cotton data query system

PI: M. Sabesh

Co PI: Isabella Agrwal, Sunil Mahajan

**Importance of the study:** Data, information, and knowledge being the pivotal elements for making decisions and policies, here there is no centralized data collation and diffusion system for cotton as a commodity. In gist, different aspects of cotton related data is maintained and scattered across different agencies. In the emerging information and communication technology, development of data query system which is web enabled could be a better option for the users to access the data across the globe.

#### Salient findings

During 2023-24, thirty-two data sets were collected and digitized and the necessary database was created. Further, seventeen datasets have been updated with the latest data collected. Besides, twenty-five data query modules developed were created and tested. These query modules were created using Java-script and Python-based program coding, and MySQL was used as a backend database support. Some query module and their output are described below. Query module for cotton genetic resources (Fig 3.28.1) and its output is shown in Fig 3.28.2. In another query, fertilizer consumption per hectare for cotton cultivation in Maharashtra, along with its output, is presented in Fig 3.28.3. The database includes datasets from 1996-97 to 2021-22 for all states. Similarly, the query module for export of raw cotton from India to different countries in Fig. 3.28.4 depicts the export of raw cotton from India to Bangladesh (query and output) In addition, under this project, the ICAR-CICR website (Fig.3.28.5) and ICAR-AICRP on Cotton website (Fig 3.28.6) is being maintained and upgraded. The ICAR-CICR website was fully revamped with in-house expertise using open-source WordPress- CMS software. The site was created following the Guidelines for Indian Government Websites (GIGW). The content of the site can be read in six Indian languages along with English, and a better accessibility tool bar was incorporated. The ICAR-AICRP on Cotton website was developed using HTML codes.

**Cotton Genetics Resources**

|               |            |            |                      |               |              |            |
|---------------|------------|------------|----------------------|---------------|--------------|------------|
| Plant Type:   | Lanney     | Normal     | Stem Hairyness:      | Densely Hairy | Normal       | Sparsely   |
| Stem Colour:  | OP         | No mention | Intermediate Length: | Medium        | No mention   |            |
| Leaf Size:    | Large      | Normal     | Leaf Shape:          | Deep cut      | Normal       | Normal     |
| Leaf Length:  | Normal     | Normal     | Leaf Colour:         | Green         | Light Green  | No mention |
| Leaf Surface: | Smooth     | Normal     | Leaf Glabrous:       | Smooth        | No mention   |            |
| Bristles:     | No mention | Normal     | Petal Color:         | Cream         | Light Yellow | No mention |
| Petal Spot:   | Absent     | No mention | Pollen Color:        | Cream         | Light Yellow | Yellow     |

|                                       |            |            |            |                      |            |        |            |       |
|---------------------------------------|------------|------------|------------|----------------------|------------|--------|------------|-------|
| Boll Bearing Habit:                   | No mention | Normal     | Sparsely   | Boll Size:           | Large      | Medium | No mention | Small |
| Boll Shape:                           | Conical    | Elongated  | No mention | Boll Surface:        | No mention | GP     |            |       |
| Boll Glabrous:                        | Smooth     | No mention |            | Boll Opening:        | No mention | Normal |            |       |
| Days First Flowering:                 |            |            |            | First Boll Bursting: |            |        |            |       |
| Boll Weight:                          |            |            |            | Plant Height:        |            |        |            |       |
| Local Boll:                           |            |            |            | Seed Cotton Yield:   |            |        |            |       |
| Growing Culture:                      |            |            |            | Mean Hilo Length:    |            |        |            |       |
| Seed Index:                           |            |            |            | Lint Index:          |            |        |            |       |
| No Monopodial Plant:                  |            |            |            | No Symподиал Plant:  |            |        |            |       |
| Spur Length:                          |            |            |            | Uniformity Ratio:    |            |        |            |       |
| Microstoma Value:                     |            |            |            | Strength:            |            |        |            |       |
| <input type="button" value="SEARCH"/> |            |            |            |                      |            |        |            |       |

Fig 3.28.1: Query module of cotton genetic resources



| IC No  | Plant Type | Stem Hairy ness | Stem Colour | Inter node Length | Leaf Size | Leaf Shape | Leaf Lobing | Leaf Colour | Leaf Surface  | Leaf Glands | Days First Flowering | Bracts | Petal Colour | Petal Spot | Pollen Colour | Boll Bearing Habit | Boll Size | Boll Shape | Boll Surface | Boll Glands | Days First Boll Bursting | Boll Opening | Locu/Boll | Seed Cotton Yield/Pla |
|--------|------------|-----------------|-------------|-------------------|-----------|------------|-------------|-------------|---------------|-------------|----------------------|--------|--------------|------------|---------------|--------------------|-----------|------------|--------------|-------------|--------------------------|--------------|-----------|-----------------------|
| 356518 | Lanky      | Densely Hairy   | GP          | Medium            | Normal    | Normal     | Broad       | Light Green | Densely Hairy | Dense       | 71                   | Normal | Light Yellow | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 126                      | Normal       | 4         | 62.3                  |
| 356519 | Compact    | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Tapering   | SP           | Dense       | 130                      | Normal       | 4         | 30.3                  |
| 356520 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Large     | Oval       | SP           | Dense       | 126                      | Normal       | 4         | 39.3                  |
| 356522 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 74                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 126                      | Normal       | 4         | 21.3                  |
| 356531 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 126                      | Normal       | 4         | 45.3                  |
| 356532 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 72                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 130                      | Normal       | 4         | 26.3                  |
| 356541 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 62                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 139                      | Normal       | 4         | 19                    |
| 356549 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 62                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Round      | SP           | Dense       | 130                      | Normal       | 4         | 34.1                  |
| 356556 | Lanky      | Hairy           | GP          | Medium            | Small     | Normal     | Broad       | Green       | Hairy         | Dense       | 65                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Tapering   | SP           | Dense       | 128                      | Normal       | 4         | 31.3                  |
| 356562 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 71                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 136                      | Normal       | 4         | 35.7                  |
| 356571 | Lanky      | Densely Hairy   | GP          | Medium            | Normal    | Normal     | Broad       | Light Green | Densely Hairy | Dense       | 64                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Tapering   | SP           | Dense       | 124                      | Normal       | 4         | 28.9                  |
| 356586 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 58                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 121                      | Normal       | 4         | 23.3                  |
| 356593 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 64                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Oval       | SP           | Dense       | 129                      | Normal       | 4         | 19.7                  |
| 356594 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 64                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Elongated  | SP           | Dense       | 129                      | Normal       | 4         | 16.3                  |
| 356601 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 71                   | Normal | Light Yellow | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 134                      | Normal       | 4         | 33.7                  |
| 356607 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 62                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 129                      | Normal       | 4         | 31.3                  |
| 356617 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 60                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Elongated  | SP           | Dense       | 134                      | Normal       | 4         | 22.3                  |
| 356618 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 71                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Elongated  | SP           | Dense       | 124                      | Normal       | 4         | 44.7                  |
| 356624 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 75                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Conical    | SP           | Dense       | 130                      | Normal       | 4         | 32.3                  |
| 356638 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 133                      | Normal       | 4         | 38.7                  |
| 356639 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 73                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Oval       | SP           | Dense       | 132                      | Normal       | 4         | 35.7                  |
| 356649 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 122                      | Normal       | 4         | 39.3                  |
| 356650 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 70                   | Normal | Cream        | Absent     | Cream         | Normal             | Medium    | Elongated  | SP           | Dense       | 126                      | Normal       | 4         | 31.7                  |
| 356658 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 65                   | Normal | Light Yellow | Absent     | Cream         | Normal             | Medium    | Oval       | SP           | Dense       | 126                      | Normal       | 4         | 23.7                  |
| 356667 | Lanky      | Hairy           | GP          | Medium            | Normal    | Normal     | Broad       | Green       | Hairy         | Dense       | 60                   | Normal | Cream        | Absent     | Yellow        | Normal             | Medium    | Tapering   | SP           | Dense       | 132                      | Normal       | 4         | 22.5                  |

Fig 3.28.2: Output of query module of cotton genetic resources

**Cost of Cultivation**

State: MAHARASHTRA

Component: FERTILIZER UNIT CONSUMED (KG NUTRIENT/HA)

Year: 5 SELECTED

Download: DOWNLOAD

| Sl.No | State       | Component                                 | Year    | Unit   |
|-------|-------------|-------------------------------------------|---------|--------|
| 1     | Maharashtra | Fertilizer unit consumed (Kg Nutrient/ha) | 1996-97 | 95.24  |
| 2     | Maharashtra | Fertilizer unit consumed (Kg Nutrient/ha) | 2006-07 | 106.03 |
| 3     | Maharashtra | Fertilizer unit consumed (Kg Nutrient/ha) | 2011-12 | 273.18 |
| 4     | Maharashtra | Fertilizer unit consumed (Kg Nutrient/ha) | 2017-18 | 299.75 |
| 5     | Maharashtra | Fertilizer unit consumed (Kg Nutrient/ha) | 2021-22 | 356.03 |

Source: Ministry of Agriculture and Farmers Welfare and Govt of India

Fig 3.28.3: Fertilizer consumed in Maharashtra (query and output)

**Export of Raw Cotton to Major Countries (Including Waste) (1999-2000 to 2009-10)**

Country: BANGLADESH

Year: 5 SELECTED

Download: DOWNLOAD

| Sl.No | Country    | Year      | Export Quantity | Export Value |
|-------|------------|-----------|-----------------|--------------|
| 1     | Bangladesh | 1999-2000 | 12              | 16           |
| 2     | Bangladesh | 2005-06   | 44680           | 21508        |
| 3     | Bangladesh | 2011-12   | 18972           | 20489        |
| 4     | Bangladesh | 2017-18   | 407490          | 545700       |
| 5     | Bangladesh | 2022-23   | 93840           | 180700       |

Basic Quantity in Tonnes; Value in Rupees in Lakhs  
Source: Monthly Statistics of the Foreign Trade of India, DIOCS, Kolkata

Fig 3.28.4: Export of raw cotton from India to Bangladesh (query and output)



Fig 3.28.5: Home page of ICAR-CICR website (www.cicr.org.in)





Fig 3.28.6: Home page of ICAR-AICRP on Cotton website ([www.aiccp.cicr.org.in](http://www.aiccp.cicr.org.in))

### 3.29 Project Name: Conservation agriculture practices for cotton-wheat system

PI: Amarpreet Singh

**The importance of the study:** The study aimed to understand the effects of conservation agriculture practices under cotton-wheat cropping system with components like residue retention / incorporation and removal; zero / minimum and strip tillage; and conventional tillage practices.

#### Salient findings

- Under the conservation agriculture based cotton-

wheat system experiment (Figure 3.29.1), seed cotton yield was significantly higher with T5-Zero Tillage for cotton sowing + Wheat residue retention + Mulcher (2,975.4 kg/ha) than with T1- Conventional tillage for cotton sowing (Farmers' practice) (2,205.4 Kg/ha) and T2- Zero tillage for cotton sowing + No wheat residue retention (removal of wheat straw) (2,008.7 kg/ha), but was at par with T3- Zero tillage for cotton sowing + Wheat residue retention (2,824.0 kg/ha).

- Wheat grain yield was significantly higher with T5-Zero tillage for wheat sowing with Happy Seeder + Cotton residue retention + Mulcher (5,172.3 Kg/ha) than with T1-Conventional tillage for wheat sowing with normal seed-cum-fertilizer drill (Farmers' practice) (4,174.0 Kg/ha) and (T-2) Zero tillage for wheat sowing with Zero till fertilizer seed drill + No Cotton residue retention (Removal of cotton stalks) (3,835.0 kg/ha), but was at par with T3-Zero Tillage for wheat sowing with Happy Seeder + Cotton residue retention (5,064.3 Kg/ha).
- The total system productivity was higher under T5-Zero Tillage for cotton sowing + Wheat residue retention + Mulcher (for cotton) and Zero Tillage for wheat sowing with Happy Seeder + With Cotton residue retention + Mulcher (for wheat), and the second best total system productivity was under T3-Zero tillage for cotton sowing + Wheat residue retention (for cotton) and Zero tillage for wheat sowing with Happy Seeder + Cotton residue retention (for wheat). etc., under north-western Indian conditions.



Figure 3.29.1 Plates 1a: Mulching of cotton stalks with tractor operated Mulcher before wheat sowing; 1b: Cotton stalk shredding with tractor operated Cotton Stalk Shredder before wheat sowing; 1c: Wheat sowing with Happy Seeder in standing cotton stalks; 1d: Wheat sowing with Supper Seeder in standing cotton stalks; 1e: Happy seeder sown wheat in standing cotton stalks (after operating mulcher); 1f: Happy seeder sown wheat in standing cotton stalks (No mulcher); 1g: Supper seeder sown wheat in standing cotton stalks (incorporation of cotton stalks) at ICAR-CICR, Regional Station, Sirsa

### 3.30 Project Name: Effect of canopy management options on productivity of hybrid Bt cotton in North India

PI: Amarpreet Singh

**The importance of the study:** This study aimed to evaluate the effects of different crop canopy management options with different crop geometries on sustainable seed cotton yield.

#### Salient findings

- Among the plant spacing options (Factor-I), a significantly higher seed cotton yield was obtained with  $67.5 \times 45$  cm (2,671.7 kg/ha) over the wider spacing of  $67.5 \times 60$  cm (2,454.8 kg/ha) but was at par with the closer spacing of  $67.5 \times 30$  cm (2,559.4 kg/ha) in North India with cotton genotype RCH 926 BG II.

- Among Factor-II (Monopodia removal, detoping & growth regulators application), significantly higher seed cotton yield was obtained with Detoping + Etheral application (2,707.5 kg/ha) than with control (2,262.6 kg/ha). All treatments applied w.r.t. with Factor-II resulted in significantly higher seed cotton yield than the control (Figure 3.30.1).
- The yield due to monopodia removal alone was 2,655.4 kg/ha, which was on par (2,541.8 kg/ha) with Detoping (at 90 -100 DAS) alone but was significantly higher than the control.
- Monopodia removal + Detoping resulted in significantly higher seed cotton yield (2,448.3 kg/ha) over control, but was at par with Detoping (at 90 -100 DAS) alone (2,541.8 kg/ha) and Monopodia removal + Detoping + Etheral application (2,489.6 kg/ha).



Figure 3.30.1:a: Monopodia removal of cotton; b: Detoping of cotton at ICAR-CICR, Regional Station, Sirsa

### 3.31 Project Name: Evaluation of different crop geometries in cotton(Ad-Hoc experiment)]

PI: Amarpreet Singh

**The importance of the study:** This study aims to study the cotton crop geometries to determine the efficacy and performance of robotic picking machinery, which can enable mechanized picking in the future.

#### Salient findings

- A field experiment to evaluate the effect of various crop geometries (row-to-row distances and plant-to-plant distances) in cotton was conducted with the RCH 773 BG II hybrid cotton genotype for the field evaluation of the robotic picker developed by CNHI (Figure 3.31.1).
- The agronomic performance of cotton crop planted under various crop geometries was evaluated at the ICAR-CICR, Regional Station, Sirsa. Significantly higher seed cotton yield was obtained with a row distance of 2.21 feet  $\times$  2.0 feet plant distance ( $67.5 \times$

60 cm) (3,285.8 kg/ha), followed by 2.21 feet row distance  $\times$  2.5 feet plant distance ( $67.5 \times 75$  cm) (3,139.5 kg/ha) over all other crop geometries tested under experiments.



Figure 3.31.1: Field experiment to evaluate the effect of various crop geometries in cotton at ICAR-CICR, Regional Station, Sirsa

## Cultivar Notifications in 2024

***Gossypium arboreum*****Cultivar: CICR-A NC Cotton 67 (CNA 1092)****Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024**Developer:** V.N.Waghmare, **Associates:** R V Salame**Salient features:** Medium staple and good fibre strength desi cotton variety (Average Yield – 10.23 q/ha; Potential yield ->22 q/ha; Average boll weight – 2.4 g; Plant height – 160 cm; GOT – 33.1 %; Fibre length – 24.5 mm; Fibre strength – 25.2 g/tex, Micronaire: 5.2 µg/inch, Uniformity Index: 82 %)**Recommended for:** Rainfed Conditions of Central Zone (Maharashtra, Gujarat, Madhya Pradesh and Odisha)***Gossypium hirsutum (Non-Bt)*****Cultivar: CICR-H NC Cotton 58 (CNH 17395) Shalini****Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024**Developers:** Vinita Gotmare, Rachna Pande, Neelkanth Hiremani, M Saravanan, Harish Kumbhalkar, YG Prasad**Salient features:** Brown linted naturally coloured cotton variety (Average Yield – 14.41 q/ha; GOT – 32.6 %; Fibre length – 22.6 mm; Fibre strength – 23.9 g/tex; Micronaire - 4.5 µg/in)**Recommended for:** Rainfed conditions of Central Zone (Madhya Pradesh, Maharashtra and Gujarat)**Cultivar: CICR-H NC Cotton 64 (CNH-18529)****Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024**Developer:** Vinita Gotmare, **Co-Developers:** Rachna Pande, Neelkanth Hiremani, H B Santosh, M Saravanan, Chandrashekhar, Harish Kumbhalkar, Y G Prasad**Salient features:** DarkBrown linted naturally coloured cotton variety (Average seed cotton yield of 1011 kg/ha under **Rainfed (R)** & 1093 kg/ha under **Irrigated (I)**; **Rainfed :** UHML of 22.5, micronaire of 5.1 µg/inch, and bundle strength of 23.4 g/tex, **Irrigated:** UHML- 22.6 mm, micronaire 4.1µg/inch and Bundle strength of 24.4 g/tex)**Recommended for:** Rainfed & Irrigated conditions of Central Zone (Chhattisgarh, Gujarat, Madhya Pradesh and Maharashtra)***Gossypium hirsutum (Bt)*****Cultivar: CICR-H Cotton 40 (ICAR-CICR PKV 081 Bt)****Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024**Developers:** Suman Bala Singh, Rahul M. Phuke, Santosh HB, VN Waghmare, G Balasubramani, K. R. Kranti, Sandhya Kranti, KP Raghavendra, S. Manickam, Ramkrushna GI, Vivek Shah, N. S. Hiremani, Y. G. Prasad T. H. Rathod, V. V. Ujjainkar; **Technical Support:** Bhumeshwar Fande, Kunal Gaikwad**Salient features:** Medium maturing, medium staple Bt cotton variety amenable for high density planting (Average Yield – 17.30 q/ha; Potential yield – 32.05 q/ha; Average boll weight – 3.8 g; Plant height – 118.0 cm; GOT – 33.87 %; Fibre length – 25.93 mm; Fibre strength – 25.8 g/tex, Micronaire : 3.53 µg/inch, Uniformity Index : 83.77 %)**Recommended for:** Rainfed conditions of South Zone (Telangana, Andhra Pradesh, Karnataka, Tamil Nadu)**Cultivar: CICR-H Bt Cotton 65 (ICAR-CICR 18-Bt)****Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024**Developers:** Dr. Suman Bala Singh, Dr. Rahul M. Phuke, Dr. HB Santosh Dr VN Waghmare, Dr KP Raghavendra, Dr. G. Balasubramani, Dr Vivek Shah, Dr. Y. G. Prasad; **Technical Support:** Bhumeshwar Fande**Salient features:** An early maturing, medium staple Bt cotton variety amenable for high density planting

(Average Yield – 15.47 q/ha; Potential yield – 22.98 q/ha; Average boll weight – 3.66g; Plant height – 116.5 cm; GOT – 39.23%; Fibre length – 23.4 mm; Fibre strength – 24.3 g/tex, Micronaire: 4.9  $\mu\text{g}/\text{inch}$ , Uniformity Index: 81.4 %)

**Recommended for:** Rainfed conditions of Central Zone (Maharashtra, Madhya Pradesh and Gujarat)

**Cultivar: CICR-H Cotton 66 (ICAR-CICR Bt 20 - 31)**

**Notification Number and Date:** S.O. 4388(E), 8<sup>th</sup> October 2024

**Developers:** Dr. HB Santosh, Dr. Rahul M. Phuke, Dr. S. Manickam, Regional Station, Coimbatore, Dr. Suman Bala Singh, Dr. VN Waghmare, Dr. KP Raghavendra, Dr. Vivek Shah, Dr. G. Balsubramani, Dr. Y. G. Prasad

**Collaborator:** Dr. SS Patil, UAS, Dharwad; **Technical Support:** Mr. Kunal Gaikwad

**Salient features:** An early maturing, medium staple Bt cotton variety amenable for high density planting (Average Yield – 14.45 q/ha; Potential yield – 21.02 q/ha; Average boll weight – 3.66g; Plant height – 116.4 cm; GOT – 36.0 %; Fibre length – 25.8 mm; Fibre strength – 26.0 g/tex, Micronaire: 5.3  $\mu\text{g}/\text{inch}$ , Uniformity Index: 83.0 %)

**Recommended for:** Rainfed conditions of Central Zone (Maharashtra, Madhya Pradesh and Gujarat)

### **ELS cotton productivity enhancement through agronomic manipulation**

Increased plant density with appropriate canopy management in Extra Long Staple (ELS) H x B hybrids makes it possible to produce more number of bolls per unit area and higher seed cotton yield without the problem of rank growth and mutual shading effect. Experimental results obtained from field trials conducted at ICAR-CICR RS, Coimbatore on these aspects during kharif 2020 (July 2020-January, 2021) to Kharif 2022 (July 2022-January, 2023) proved that increased plant density (90 x 30 cm; 37,037 plants ha<sup>-1</sup>) combined with canopy management (Mepiquat Chloride application @ 60 ppm when height node ratio (HNR) reached 1.5 followed by 30 ppm twice at 15 days interval after first spray) significantly enhanced the number of bolls per unit area and seed cotton yield of MRC 7918 BG II (103.8 bolls m<sup>-2</sup> and 3,112 kg ha<sup>-1</sup>) vis-à-vis farmers' practice (90 x 60 cm; 18,518 plants ha<sup>-1</sup>; 92.1 bolls m<sup>-2</sup>, 2,358 kg ha<sup>-1</sup>) 32% yield increase over three years.

### **Gap-filling technology for the better establishment of cotton crop with inherent soil moisture**

Gap-filling using inherent soil moisture is done after removing the dry soil layer from the point of non-germinated seed spots (gaps between plants), and the seeds are sown manually at the soil moisture level similar to the first sowing using a dibbler and shovel/trowel tools within 10 days after sowing. SCY was higher in plants established using this technology (97.4

g/plant) than in other methods like flood irrigation (19.6 g/plant) but lower than the plants of normal sowing (183 g/ plant). Lower CLCuD severity was observed in established plants with this technology (13.8%) compared with other (22.8 - 36%) but at par with normally sown plants (4.92%). A good yield of BGII cotton hybrids can be realized with 80-90% plant population (32-35 Q/ha).

**Nutrient Expert®:** A decision-support system for hybrid cotton for Nutrient Expert® is a cutting-edge decision support system (DSS), which consists of quantitative evaluation of the fertility of tropical soils (QUEFTS) model for fertilizer prescriptions. Developed with the principles of site-specific nutrient management (SSNM) and offers 4R (right source, right rate, right time and right place) nutrient prescriptions to farmers aimed at bridging the yield gaps along with targeted yield and by improving the overall farmer profitability and NUE of cotton. Questionnaire was prepared at the sites before validation. The method uses site profiles (planting time, maturity period, canopy and growing environment) and field size on an acre or hectare basis. The method also uses soil test values. It provides different sources of fertilizer (inorganic or single or compound), organic manures (cartload or tractor trolley) and speciality micronutrients, and split doses. It also delivers profit analysis and compares current farmer fertilizer practices. This web app and portable document format (pdf) report can be shared through a message or email.

| Sr. No. | ICAR certified ICAR-CICR Technologies, Processes, etc                                                                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1       | Nutrient Expert®: A decision support system for hybrid cotton (ICAR-NRM-CICR-Product-2024-221)                                    |
| 2       | Novel cotton based Integrated Farming Systems (IFS) model for rainfed dry sub-humid ecosystem (ICAR-NRM-CICR Technology-2024-222) |
| 3       | Gap-filling technology for better cotton crop establishment in inherent soil moisture (ICAR-NRM-CICR Technology -2024-223)        |



### 5.1: Training and Capacity Building

#### 5.1.1: Training Received

##### Scientists

##### National

| Sr. No. | Name of Training Programme                                                                                                         | Name of Scientists                                           | Place/ Training Organized                                                                            | Training Duration |                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|----------------------|
|         |                                                                                                                                    |                                                              |                                                                                                      | Start Date        | End Date             |
| 1.      | Artificial Intelligence for water resources management in Agriculture                                                              | Dr. Amarpreet Singh                                          | Department of Soil and Water Engineering, PAU, Ludhiana Punjab                                       | 18.01.2024        | 07.02.2024 (19 Days) |
| 2.      | Voltiomics: A Key to understand plant-microbe interactions and stress management in crop plants for a greener tomorrow             | Dr. P. Valarmathi                                            | Department of Microbiology TNAU, Coimbatore                                                          | 01.02.2024        | 10.02.2024 (10 Days) |
| 3.      | Decoding Genomics & Proteomics data using Machine Learning Approach                                                                | Dr. J Amudha<br>Dr. Joy Das                                  | ICAR- Indian Agricultural Statistics Research institute                                              | 21.02.2024        | 27.02.2024 (7 Days)  |
| 4.      | Pedagogy Development Program for enhancing pedagogical competencies for Agriculture Education                                      | Dr. V. S. Nagrare<br>Dr. Babasaheb Fand<br>Dr. A. Manikandan | NAAS New Delhi                                                                                       | 04.03.2024        | 08.03.2024 (5 Days)  |
| 5.      | Development of AI-based Android Applications in Agriculture                                                                        | Dr. Shivaji Thube<br>Dr. Devindrappa                         | ICAR- IASRI, New Delhi                                                                               | 05.03.2024        | 25.03.2024 (21 Days) |
| 6.      | Pedagogy Development Program for enhancing pedagogical competencies for Agriculture Education                                      | Dr. Ramkrushna G. Idapuganti<br>Dr. Rachna Pande             | NAAS New Delhi                                                                                       | 29.04.2024        | 3.05.2024 (5 Days)   |
| 7.      | Summer School in Geospatial Science & Technology (Level 2)<br>Theme: Geospatial Science and Technology Applications in Agriculture | Dr. R. Raja                                                  | Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu. | 05.06.2024        | 25.06.2024 (21 Days) |
| 8.      | Hands on training in mining of bioactive metabolites -Phenolic compounds                                                           | Dr. J Gulzar Banu                                            | TNAU, Coimbatore                                                                                     | 12.06.2024        | 14.06.2024 (3 Days)  |

| Sr. No. | Name of Training Programme                                                                              | Name of Scientists                     | Place/ Training Organized                                                                       | Training Duration |                     |
|---------|---------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|---------------------|
|         |                                                                                                         |                                        |                                                                                                 | Start Date        | End Date            |
| 9.      | "BD-NCBS-CoE Hands on Basic Flow Cytometry Course"                                                      | Dr. Rakesh Kumar                       | Central Imaging and Flow Cytometry Facility, National Centre for Biological Sciences, Bengaluru | 25.06.2024        | 27.06.2024 (3 Days) |
| 10.     | "Workshop on Generative AI tools for Agriculture"                                                       | Dr. Neelakanth S Hiremani              | ICAR-NAARM, Hyderabad                                                                           | 26.06.2024        | 28.06.2024 (3 Days) |
| 11.     | Bioinformatics Advances in Genomics Data Analysis                                                       | Dr. KP Raghavendra<br>Dr. Rakesh Kumar | Division of Agricultural Bioinformatics (DABin), ICAR-IASRI, New Delhi                          | 24.06.2024        | 28.06.2024 (5 Days) |
| 12.     | Multivariate Data Analysis Using R                                                                      | Dr. K Velmourougane                    | NAARM, Hyderabad                                                                                | 22.07.2024        | 26.07.2024 (5 Days) |
| 13.     | Online workshop on conduct of inquiry on complaints relating to Sexual Harassment of women at workplace | Dr. J Amudha                           | ISTM, New Delhi                                                                                 | 23.09.2024        | 23.09.2024 (1 Day)  |
| 14.     | Training Programme for MANAGE Facilitators                                                              | Dr. Usha Rani,                         | MANAGE, Hyderabad.                                                                              | 19.11.2024        | 22.11.2024 (4 Days) |

#### Technical Staff

| Sr. No. | Name of Training/ Programme                                                              | Name                                                                                                                                | Place/ Organized                                             | Training Start Date | Training End Date    |
|---------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|----------------------|
| 1       | Digital Competency, New Tools and Software for Computer Applications                     | Ms. K Subhashree<br>Mrs. Vandana Satish                                                                                             | ICAR-IASRI, New Delhi                                        | 03.01.2024          | 09.01.2024 (7 Days)  |
| 2       | Technological Advances leading to Smart Farming & Agripreneurship                        | Mr. Satpal Singh                                                                                                                    | UTKARSH-PDKV Agribusiness Incubation Centre, Dr. PDKV, Akola | 01.01.2024          | 30.01.2024 (30 Days) |
| 3       | Big Data Analysis for Weather based Crop Management                                      | Mrs. Rachana Deshmukh<br>Mrs. Pooja Gonge<br>Mr. Dineshkumar Mahule<br>Mr. Ajit Meshram<br>Mr. Kunal Gaikwad<br>Mr. Akshay Barahate | ICAR-CRIDA, Hyderabad                                        | 29.01.2024          | 07.02.2024 (10 Days) |
| 4       | E-Governance tools and applications in ICAR                                              | Mrs. Chetali Ridge                                                                                                                  | ICAR-IASRI, New Delhi                                        | 08.02.2024          | 14.02.2024 (7 Days)  |
| 5       | Layout and Maintenance of field experiments and Recording observation on Real time Basis | Dr. Jimmy Vaidhya                                                                                                                   | ICAR-IARI, New Delhi                                         | 10.03.2024          | 15.03.2024 (6 Days)  |
| 6       | Training on awareness programme regarding NABL Accreditation of Seed Testing Labs        | Mr. J S. Kambe<br>Mr. Krushna Gajghate                                                                                              | SIAET centre, Bhopal                                         | 27.05.2024          | 29.05.2024 (3 Days)  |



| Sr. No. | Name of Training/ Programme                                                               | Name                                                                                 | Place/ Organized                                                                      | Training Start Date | Training End Date    |
|---------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|----------------------|
| 7       | "Integrated weed management strategies under changing Agricultural Scenario"              | Dr A Karthik                                                                         | ICAR-Directorate of Weed Research, Jabalpur and Indian Society of Weed Science (ISWS) | 28.08.2024          | 06.09.2024 (10 Days) |
| 8       | "MS-Excel (MS -Ex-14)"                                                                    | Mrs. Mithila Meshram<br>Mrs. Pooja Gunge<br>Mr. Kunal Gaikwad<br>Mr. Akshay Barahate | Institute of Secretariat Training and Management (ISTM), New Delhi                    | 18.12.2024          | 20.12.2024 (3 Days)  |
| 9       | 21st Advanced level training in Soil testing, plant analysis and water quality assessment | Mr. Chandrashekhar Mundafale,                                                        | Division of Soil Science and Agricultural Chemistry, ICAR - IARI, New Delhi           | 10.12.2024          | 30.12.2024 (21 Days) |

#### Student Internship

| Sr. no | Name of Student             | Name of Training Coordinator | Duration   |            | Title                                                                                                                                       |
|--------|-----------------------------|------------------------------|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Ms. Aarathi Shree M         | Dr. Joy Das                  | 27.03.2024 | 25.05.2024 | Molecular characterization and RNAi-mediated functional validation of the Halloween Gene <i>shroud</i> from <i>Pectinophora gossypiella</i> |
| 2      | Ms. Divya Ambadkar          | Dr. K P Raghavendra          | 15.07.2024 | 30.08.2024 | Hands -on training in Basic Molecular Biology and Plant biotechnology Techniques                                                            |
| 3      | Ms. Kshitij Giripunje       | Dr. Joy Das                  | 15.07.2024 | 30.08.2024 | Hands -on training in Basic Molecular Biology and Plant biotechnology Techniques                                                            |
| 4      | Ms. Omika Sabale            | Dr. J Amudha                 | 29.07.2024 | 30.08.2024 | Hands -on training in Basic Molecular Biology and Plant biotechnology Techniques                                                            |
| 5      | Ms. Ashwini Manikrao Walode | Dr Rakesh Kumar              | 01.08.2024 | 31.10.2024 | Hands -on training in Basic Molecular Biology and Plant biotechnology Techniques                                                            |

#### Student's Dissertation

| Sr.No | Name of student     | Name of Guide/Advisor | Thesis Title                                                                                                     | Institution                                 | University                                             |
|-------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| 1     | Ms. Asmita Patil    | Dr. G. Balasubramani  | Simple sequence repeats (SSR) markers aided genetic diversity analysis in upland cotton ( <i>G. hirsutum</i> L.) | L.A.D & Smt. R. P. College for women Nagpur | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 2     | Ms. Srushti Bante   | Dr. J. Amudha         | Studies on SSR marker linked to relative water content in cotton                                                 | L.A.D & Smt. R. P. College for women Nagpur | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 3     | Ms. Sakshi Sarda    | Dr. J. Amudha         | Studies on SSR marker linked to osmotic potential (OP) in drought resistant cotton                               | Hislop college Nagpur                       | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 4     | Ms. Suvidha sukhdev | Dr. Rakesh Kumar      | Molecular Studies on shadow (SAD) gene and its Role in the growth and development of                             | Hislop college Nagpur                       | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |



| Sr.No | Name of student              | Name of Guide/Advisor | Thesis Title                                                                                                                                              | Institution                                                | University                                             |
|-------|------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|
|       |                              |                       | Pink Bollworm ( <i>Pectinophora gossypiella</i> ), a major cotton pest                                                                                    |                                                            |                                                        |
| 5     | Ms. Tanavi Dhanorkar         | Dr. K Velmourougane   | Cotton-based legume intercropping system on soil biology and nutrient availability in rainfed Vertisol                                                    | Hislop college Nagpur                                      | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 6     | Ms. Sejal Bhoyar             | Dr. K Velmourougane   | Major and minor millets influence soil nutrient and biological attributes in rainfed Vertisols                                                            | Hislop college Nagpur                                      | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 7     | Ms. Pranita Ramchndra Begade | Dr. Rakesh Kumar      | Protein expression optimization of recombinant <i>Lachnospiraceae bacterium Cas12a</i> (LbCas12a) in <i>E. Coli</i> Strain                                | Indraprastha New Arts Commerce and Science College, Wardha | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 8     | Ms. Tanvi Rajesh Thool       | Dr. Joy Das           | Molecular studies on spook gene ( <i>PgSpo</i> ) and its role in the growth and development of Pink Bollworm                                              | Indraprastha New Arts Commerce and Science College, Wardha | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 9     | Mr. Ashlesha Yelure          | Dr. G. Balasubramani  | Genetic Analysis of upland cotton ( <i>G. hirsutum</i> L.) using SSR markers.                                                                             | Hislop college Nagpur                                      | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 10    | Ms. Rashmee Rangdar          | Dr. Rakesh Kumar      | Identification and cloning of Ecdysteroid biosynthesis pathway gene <i>Diembodied</i> (DIB) from cotton Pink Bollworm ( <i>Pectinophora gossypiella</i> ) | Hislop college Nagpur                                      | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 11    | Ms. Mayuri Kalbhande         | Dr. Pooja Verma       | Biochemical and Nutritional characterization of cotton genotypes under organic conditions                                                                 | Dr. Ambedkar College Nagpur                                | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |
| 12    | Ms. Samiksha Bondade         | Dr. Pooja Verma       | Effect of mulching treatments on biochemical and nutritional characteristics of cotton ( <i>Gossypium</i> spp.)                                           | Dr. Ambedkar College Nagpur                                | Rashtrasant Tukadoji Maharaj Nagpur University (RTMNU) |

## 5.2: Trainings Imparted by ICAR-CICR

| Sr. No. | Name of the Training                               | Place & Date                                                                               | Participants/ Beneficiaries | Scheme under which Training is held       | Number of participants |        | Training Coordinator/s                                                                |
|---------|----------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|------------------------|--------|---------------------------------------------------------------------------------------|
|         |                                                    |                                                                                            |                             |                                           | Male                   | Female |                                                                                       |
| 1.      | Integrated Cotton Production Technology            | Chargaon, Tal-Umred, Dist.- Nagpur<br>12 January 2024                                      | Farmers                     | ICAR-CICR and CCI Extension Pilot Project | 50                     | 0      | Dr DT Nagrale                                                                         |
| 2.      | Integrated Crop Management (ICM) in Cotton         | Kallakurichi and Namakkal District<br>22-24 January 2024                                   | Farmers                     | ICAR-CICR and CCI Extension Pilot Project | 40                     | 40     | Dr A H Prakash, Dr S. Usha Rani, Dr A Manivannan, Dr M. Sabesh and Dr A Sampathkumar, |
| 3.      | High Density Planting System of Cotton Cultivation | Muthuramalingapuram, Tiruchuli block, Virudhunagar district, Tamil Nadu<br>30 January 2024 | Farmers                     | ICAR-CICR and CCI Extension Pilot Project | 28                     | 27     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M                                    |



| Sr. No. | Name of the Training                                                                  | Place & Date                                                                     | Participants / Beneficiaries                                       | Scheme under which Training is held       | Number of participants |        | Training Coordinator/s                               |
|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------|--------|------------------------------------------------------|
|         |                                                                                       |                                                                                  |                                                                    |                                           | Male                   | Female |                                                      |
| 4.      | Techniques in High Density Planting System of Cotton Cultivation                      | Narthampatti, Tiruchuli block, Virudhunagar district, Tamil Nadu 31 January 2024 | Farmers                                                            | ICAR-CICR and CCI Extension Pilot Project | 19                     | 27     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M   |
| 5.      | Management of Off-Season Survival Sources of Pink Bollworm                            | Jhidi, Sirsa 08 February 2024                                                    | Farmers                                                            | IRM-PBW                                   | 71                     | 9      | Dr. Rishi Kumar                                      |
| 6.      | Management of Off-Season Survival Sources of Pink Bollworm                            | Rupawas, Sirsa 08 February 2024                                                  | Farmers                                                            | IRM-PBW                                   | 37                     | 3      | Dr. Rishi Kumar                                      |
| 7.      | Management of Off-Season Survival Sources of Pink Bollworm                            | Mallenka, Sirsa 09 February 2024                                                 | Farmers                                                            | IRM-PBW                                   | 86                     | 4      | Dr. Rishi Kumar                                      |
| 8.      | Improved Cotton Cultivation Technologies                                              | ICAR-CICR, Nagpur 13-21 February 2024                                            | Agricultural extension field facilitators                          | ICAR-CICR, Nagpur & Ambuja Foundation     | 88                     | 40     | Dr Ramkrushna GI                                     |
| 9.      | Best Cotton Production Technologies to improve Yield and Quality                      | Hans Roever, KVK, Valikandapuram, Perambalir Dist 22 February 2024               | Farmers                                                            | CICR-CCI Extension Pilot Project          | 26                     | 12     | Dr A Sampathkumar, Dr S. Usha Rani, Dr M. Sabesh.    |
| 10.     | High Density Planting System of Cotton Cultivation for Higher Yield and Profitability | Rudriyampalayam village, Annur Block, Coimbatore Dist. 27 February 2024          | Farmers                                                            | CICR-CCI Extension Pilot Project          | 23                     | 17     | Dr. S. Usha Rani, Dr. M. Sabesh, Dr. A Sampathkumar, |
| 11.     | Management of Off-Season Survival Sources of Pink Bollworm                            | Malikpura, Sirsa 27 February 2024                                                | Farmers                                                            | IRM-PBW                                   | 102                    | 3      | Dr. Rishi Kumar                                      |
| 12.     | High Density Planting System of Cotton Cultivation for Higher Yield and Profitability | Anthiyur, Erode district, Tamil Nadu 29 February 2024                            | Farmers                                                            | CICR-CCI Extension Pilot Project          | 20                     | 16     | Dr. S. Usha Rani, Dr. M. Sabesh, Dr A Sampathkumar,  |
| 13.     | Recent Technologies for ELS Cotton Cultivation with                                   | Vadapudur Village, Kinathukadavu Block, Coimbatore 07 March 2024                 | Farmers                                                            | ICAR-CICR and CCI Extension Pilot Project | 21                     | 15     | Dr. A Sampathkumar, Dr. S. Usha Rani, Dr. M. Sabesh. |
| 14.     | Mela cum Farmers Training on Best Farm Practices for Cotton Farmers to Improve Yield  | Kheri, Sirsa 13 March 2024                                                       | Farmers                                                            | CICR-CCI Extension Pilot Project          | 90                     | 10     | Dr. S.K. Sain & Dr. Amarpreet Singh                  |
| 15.     | Post-Season Consultation Workshop for Cotton Stakeholders                             | ICAR-CICR Regional Station, Coimbatore 14 March 2024                             | Farmers, Extension officials, All India Radio and CIRCOT officials | ICAR-CICR and CCI Extension Pilot Project | 36                     | 32     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M   |
| 16.     | Mela cum Farmers Training on Best Farm Practices for Cotton Farmers to Improve Yield  | Jogiwala, District Sirsa, Haryana 15 March 2024                                  | Farmers                                                            | CCI-CICR Pilot Project                    | 185                    | 15     | Dr. S.K. Sain & Dr. Amarpreet Singh                  |

| Sr. No. | Name of the Training                                                                      | Place & Date                                                                          | Participants / Beneficiaries      | Scheme under which Training is held          | Number of participants |        | Training Coordinator/s                                             |
|---------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|------------------------|--------|--------------------------------------------------------------------|
|         |                                                                                           |                                                                                       |                                   |                                              | Male                   | Female |                                                                    |
| 17.     | Recent Technologies for ELS Cotton Cultivation with Higher Yields and Profitability       | Vellalapatti Village, Salem Dist Tamil Nadu                                           | Farmers                           | CICR-CCI Extension Pilot Project             | 26                     | 12     | Dr A Sampathkumar, Dr S. Usha Rani, Dr M. Sabesh                   |
| 18.     | Exposure visit of ELS Cotton Farmers from Kinathukadavu to Ginning Mill, Pollachi         | Sri Santhalakshmi Ginning Mills Pvt Ltd., Pollachi, Coimbatore district 19 March 2024 | Farmers                           | ICAR-CICR and CCI Extension Pilot Project    | 4                      | 25     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M                 |
| 19.     | Cotton Fiber Quality, Clean Cotton Picking and Crop Residue Management                    | Bommakkottai, Tiruchuli block, Virudhunagar district, Tamil Nadu 20 March 2024        | Farmers                           | ICAR-CICR and CCI Extension Pilot Project    | 27                     | 22     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M                 |
| 20.     | Mechanization and High-Density Planting System for High Yields and Productivity in Cotton | KVK Aruppukottai, Virudhunagar district, Tamil Nadu 21 March 2024                     | Farmers                           | ICAR-CICR and CCI Extension Pilot Project    | 34                     | 47     | Dr Sampathkumar A, Dr Usha Rani S, and Dr Sabesh M                 |
| 21.     | HDPS Cotton Agronomy and disease management                                               | ICAR-CICR, Nagpur 21-22 March 2024                                                    | Trainee                           | ICAR-CICR, Nagpur & Better Cotton Initiative | 58                     | 0      | Dr. A. S. Tayde, Dr. Ramkrushna G.I., Dr. B.B. Fand, Mayur Meshram |
| 22.     | Management of Off-Season Survival Sources of Pink Bollworm                                | Fatehpuria, Sirsa 26 March 2024                                                       | Farmers                           | IRM-PBW                                      | 95                     | 5      | Dr. Rishi Kumar                                                    |
| 23.     | Management of Off-Season Survival Sources of Pink Bollworm                                | Thiraj, Sirsa 28 March 2024                                                           | Farmers                           | IRM-PBW                                      | 126                    | 4      | Dr. Rishi Kumar                                                    |
| 24.     | Management of Off-Season Survival Sources of Pink Bollworm                                | Biruwala Gudha, Sirsa 28 March 2024                                                   | Farmers                           | IRM-PBW                                      | 78                     | 2      | Dr. Rishi Kumar                                                    |
| 25.     | Management of Off-Season Survival Sources of Pink Bollworm                                | Rania, Sirsa 29 March 2024                                                            | Agro Input Dealers                | IRM-PBW                                      | 160                    | 0      | Dr. Rishi Kumar                                                    |
| 26.     | Management of Off-Season Survival Sources of Pink Bollworm                                | Mohmadpuria, Sirsa 29 March 2024                                                      | Farmers                           | IRM-PBW                                      | 67                     | 3      | Dr. Rishi Kumar                                                    |
| 27.     | Recent advances in Cotton Crop Production & Protection Technologies for North Zone        | ICAR-CICR, RS, Sirsa 16-17 April 2024                                                 | Field scouts                      | Others                                       | 123                    | 18     | Dr. Rishi Kumar and Dr. Debashis Paul                              |
| 28.     | Recent advances in Cotton Crop Production & Protection Technologies for North Zone        | ICAR-CICR, RS, Sirsa 26 April 2024                                                    | Field scouts                      | Others                                       | 60                     | 10     | Dr. Rishi Kumar and Dr. Debashis Paul                              |
| 29.     | Training program on Field and laboratory techniques related to cotton crop                | ICAR-CICR, RS, Sirsa 20 May to 08 June 2024                                           | PG Students (Zoology) CDLU, Sirsa | Others                                       | 0                      | 14     | Dr. Rishi Kumar and Dr. Debashis Paul                              |



| Sr. No. | Name of the Training                                                                                                                                 | Place & Date                                        | Participants / Beneficiaries            | Scheme under which Training is held | Number of participants |        | Training Coordinator/s              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------|------------------------|--------|-------------------------------------|
|         |                                                                                                                                                      |                                                     |                                         |                                     | Male                   | Female |                                     |
| 30.     | Training of Foundation batch of Agriculture Assistant from State Department Agriculture                                                              | ICAR-CICR, Nagpur<br>30 May 2024                    | Agriculture Assistant                   | ICAR-CICR, Nagpur and RAMETI Nagpur | 39                     |        | Dr Babasaheb Fand                   |
| 31.     | Training on Management of Pink bollworm & Awareness regarding Off-season sources of survival in North Zone                                           | ICAR-CICR, RS, Sirsa<br>06 June 2024                | Agro Input Dealers                      | Rasi-ICAR-CICR-CSR project          | 112                    | 8      | Dr Rishi Kumar                      |
| 32.     | Training program on Field and laboratory techniques related to cotton crop                                                                           | ICAR-CICR, RS, Sirsa<br>10-30 June 2024             | PG Students (Biotechnology) CDLU, Sirsa | Others                              | 2                      | 2      | Dr Rishi Kumar and Dr Debashis Paul |
| 33.     | Training program on Field and laboratory techniques related to cotton crop                                                                           | ICAR-CICR, RS, Sirsa<br>18 June to 09 July 2024     | PG Students (Botany), CDLU, Sirsa       | Others                              | 1                      | 6      | Dr Rishi Kumar and Dr Debashis Paul |
| 34.     | Training cum Interactive session among cotton stakeholder & farmers programme on “Best management practices in cotton with special reference to PBW” | ATIC center, Hanumangarh, Rajasthan<br>19 June 2024 | State Agri Dept Officials and Farmers   | Rasi-ICAR-CICR-CSR project          | 95                     | 5      | Dr Rishi Kumar and Dr S K Sain      |
| 35.     | Training cum Interactive session among cotton stakeholder & farmers programme on “Best management practices in cotton with special reference to PBW” | Jhunir, Mansa Punjab<br>20 June 2024                | Farmers, stackholders                   | Rasi-ICAR-CICR-CSR project          | 90                     | 0      | Dr Rishi Kumar                      |
| 36.     | Demonstration cum Farmers Training on “Management Strategies on Pink Boll Worm in Cotton”                                                            | 1 AMP, Hanumangarh, Rajasthan<br>02 July 2024       | Farmers                                 | Rasi-ICAR-CICR-CSR project          | 78                     | 0      | Dr Subhash Chandra                  |
| 37.     | Training cum Demonstration on PBW and Insect-pest Management in Cotton                                                                               | 23 ML, Sri Ganganagar, Rajasthan<br>03 July 2024    | Farmers                                 | Rasi-ICAR-CICR-CSR project          | 107                    | 0      | Dr Satish Kumar Sain                |
| 38.     | Training Program on PBW and Insect-pest Management in Cotton                                                                                         | Chuli Kalan, Hisar<br>10 July 2024                  | Farmers                                 | Rasi-ICAR-CICR-CSR project          | 88                     | 12     | Dr S.K. Verma                       |
| 39.     | Training cum Demonstration on PBW and Insect-pest and Disease Management in Cotton                                                                   | Banwali, Sri Ganganagar, Rajasthan<br>12 July 2024  | Farmers                                 | IRM-PBW                             | 115                    | 10     | Dr Satish Kumar Sain                |

| Sr. No. | Name of the Training                                                                                                    | Place & Date                                      | Participants / Beneficiaries                      | Scheme under which Training is held | Number of participants |        | Training Coordinator/s                 |
|---------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------|------------------------|--------|----------------------------------------|
|         |                                                                                                                         |                                                   |                                                   |                                     | Male                   | Female |                                        |
| 40.     | Training Program on PBW and Insect-pest Management in Cotton                                                            | Umra, Hisar<br>13 July 2024                       | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 95                     | 7      | Dr S.K. Verma                          |
| 41.     | Training Program on PBW and Insect-pest and Disease Management in Cotton                                                | 9 ML, Sri Ganganagar, Rajasthan<br>19 July 2024   | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 144                    | 0      | Dr Satish Kumar Sain                   |
| 42.     | Training Program on PBW and Insect-pest Management in Cotton                                                            | CCS HAU, Hisar<br>22 July 2024                    | State Govt. Officials and Stakeholders            | Rasi-ICAR-CICR-CSR project          | 91                     | 9      | Dr S.K. Verma                          |
| 43.     | Improved cultivation practices and integrated insect-pest management with special reference to pink boll worm in cotton | Khera Khurd, Mansa, Punjab<br>23 July 2024        | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 105                    | 0      | Dr Amarpreet Singh                     |
| 44.     | Training Program for Cotton Farmers on PBW management                                                                   | Dingarh, Hanumangarh, Rajasthan<br>23 July 2024   | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 100                    | 4      | Dr Subhash Chandra & Dr. Debashis Paul |
| 45.     | Improved cultivation practices and integrated insect-pest management with special reference to pink boll worm in cotton | Jassi Paun Wali, Bathinda, Punjab<br>25 July 2024 | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 99                     | 11     | Dr. Amarpreet Singh                    |
| 46.     | Training program on Field and laboratory techniques related to cotton crop                                              | ICAR-CICR, RS, Sirsa<br>26 July to 25 August 2025 | PG Students (Zoology)<br>JCD, Sirsa               | Others                              | 0                      | 1      | Dr Rishi Kumar and Dr Debashis Paul    |
| 47.     | Workshop on "Management of PBW & Awareness regarding Off-season Sources of Survival in North Zone"                      | Abohar, Punjab<br>28 July 2024                    | Agro Input Dealers & ginning cum oil mills owners | Rasi-ICAR-CICR-CSR project          | 80                     | 0      | Dr Rishi Kumar                         |
| 48.     | Training on Management of Pink bollworm & Awareness regarding Off-season sources of survival in North Zone              | Sanghar Sarista, Sirsa<br>29 July 2024            | Farmers, Officials and private companies          | Rasi-ICAR-CICR-CSR project          | 98                     | 2      | Dr Rishi Kumar & Dr S.K. Sain          |
| 49.     | Improved cultivation practices and integrated insect-pest management with special reference to pink boll worm in cotton | Khiali Chahilanwal, Mansa, Punjab<br>29 July 2024 | Farmers                                           | Rasi-ICAR-CICR-CSR project          | 105                    | 0      | Dr Amarpreet Singh                     |
| 50.     | Training program on Field and laboratory techniques related to cotton crop                                              | ICAR-CICR, RS, Sirsa<br>29 July to 20 August 2024 | UG Students (Biotech) from UIFT                   | Others                              | 0                      | 1      | Dr Rishi Kumar and Dr Debashis Paul    |

| Sr. No. | Name of the Training                                                                                                    | Place & Date                                              | Participants / Beneficiaries                                           | Scheme under which Training is held             | Number of participants |        | Training Coordinator/s                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|------------------------|--------|----------------------------------------------------------|
|         |                                                                                                                         |                                                           |                                                                        |                                                 | Male                   | Female |                                                          |
| 51.     | Training program on Field and laboratory techniques related to cotton crop                                              | ICAR-CICR, RS, Sirsa<br>29 July to 05 September 2024      | UG Students (Biotech) from UIFT                                        | Others                                          | 1                      | 0      | Dr Rishi Kumar and Dr Debashis Paul                      |
| 52.     | Farm Field School on Air (All India Radio) - Valedictory function                                                       | ICAR-CICR Regional Station, Coimbatore<br>30 July 2024    | Farmers, All India Radio officials, Scientists and Extension officials | ICAR-CICR and CCI Extension Pilot Project       | 35                     | 24     | Dr Usha Rani S., Dr Sabesh M., Dr Sampathkumar A         |
| 53.     | Improved cultivation practices and integrated insect-pest management with special reference to pink boll worm in cotton | Mehta, Bathinda, Punjab<br>30 July 2024                   | Farmers                                                                | Rasi-ICAR-CICR-CSR project                      | 102                    | 8      | Dr. Amarpreet Singh                                      |
| 54.     | Training cum Demonstration on PBW and Insect-pest Management in Cotton                                                  | 22 ML, Sri Ganganagar, Rajasthan<br>02 August 2024        | Farmers                                                                | Rasi-ICAR-CICR-CSR project                      | 122                    | 0      | Dr. SK Sain                                              |
| 55.     | Farmers Training on Cotton Cultivation and Input Distribution                                                           | Hans Roever KVK, Perambalur, Tamil Nadu<br>08 August 2024 | Farmers                                                                | SCSP                                            | 27                     | 23     | Dr Prakash A H., Dr Shankarganesh K, Dr Sampathkumar A - |
| 56.     | Farmers Training on "Best Management Practices in Cotton with special emphasis on Pink Bollworm                         | Mirjawali Mer, Hanumangarh, Rajasthan<br>12 August 2024   | Farmers                                                                | Rasi-ICAR-CICR-CSR project                      | 99                     | 3      | Dr Subhash Chandra                                       |
| 57.     | Training on integrated Pest management in Cotton with Special reference to Pink Bollworm in North Zone                  | Darbi, Sirsa, Haryana<br>23 August 2024                   | Farmers                                                                | IRM- Dissemination of PBW management strategies | 86                     | 4      | Dr. Rishi Kumar and Dr. S K Sain                         |
| 58.     | Integrated crop management practices                                                                                    | ICAR-CICR, Nagpur<br>26-30 August 2024                    | Field facilitators (Ambuja Foundation)                                 | ICAR-CICR, Nagpur and Ambuja Foundation         | 32                     | 15     | Dr. Rishi Kumar and Dr. Debashis Paul                    |
| 59.     | Training Program on Hybrid Seed Production of Desi Cotton                                                               | ICAR-CICR, RS, Sirsa<br>28 August 2024                    | Farmers & cotton Stakeholders                                          | JDA (Cotton), Govt of Haryana                   | 68                     | 2      | Dr. Debashis Paul                                        |
| 60.     | Training program on Field and laboratory techniques related to cotton crop                                              | ICAR-CICR, RS, Sirsa<br>09 September to 01 October 2024   | UG Students (Biotech) CMK                                              | Others                                          | 1                      | 6      | Dr. Rishi Kumar and Dr. Debashis Paul                    |
| 61.     | Closer Spacing in cotton                                                                                                | Krosuru Sub Division, Palnadu<br>25 September 2024        | Farmers                                                                | NFSM                                            | 140                    | 10     | Dr. J. Annie Sheeba                                      |
| 62.     | Integrated Disease Management in Cotton                                                                                 | ICAR-CICR, Nagpur<br>27 September 2024                    | Feld facilitators and PU of Ambuja foundation                          | ICAR-CICR, Nagpur and Ambuja Foundation         | 25                     |        | Dr SP Gawande                                            |

| Sr. No. | Name of the Training                                                                            | Place & Date                                                                 | Participants / Beneficiaries        | Scheme under which Training is held  | Number of participants |        | Training Coordinator/s              |
|---------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|------------------------|--------|-------------------------------------|
|         |                                                                                                 |                                                                              |                                     |                                      | Male                   | Female |                                     |
| 63.     | Training for Students of Diploma Course in Agricultural Extension Services for inputs dealers   | ICAR-CICR, Nagpur<br>27 September 2024                                       | Students                            | ICAR-CICR, Nagpur and RAMETI, Nagpur | 38                     |        | Dr Rachna Pande                     |
| 64.     | Training program on PBW and Insect-pest Management in Cotton                                    | ICAR-CICR, RS, Sirsa<br>28 September 2024                                    | Farmers & other cotton stakeholders | JDA (Cotton), Govt of Haryana        |                        |        | Dr Rishi Kumar                      |
| 65.     | HDPS on cotton                                                                                  | Peddathanda village, Inguthy Mandal, Mahabubabad district<br>23 October 2024 | Farmers                             | NFSM special project on cotton       | 45                     | 35     | Dr D. Kanjana                       |
| 66.     | Management of Pink bollworm in north Zone with respect to sources of survival during off-season | Faggu, Sirsa, Haryana<br>23 October 2024                                     | Farmers                             | Rasi-ICAR-CICR-CSR project           | 95                     | 5      | Dr. Rishi Kumar                     |
| 67.     | Field Day on HDPS cotton                                                                        | Tharthur village, Jupadu bungalow Mandal<br>25 October 2024                  | Farmers                             | NFSM                                 | 113                    | 28     | Dr J. Annie Sheeba                  |
| 68.     | Training program on "Management of Off-season Survival sources of Pink bollworm in North Zone"  | Jogiwala, Sirsa, Haryana<br>27 October 2024                                  | Farmers                             | Rasi-ICAR-CICR-CSR project           | 98                     | 2      | Dr Rishi Kumar                      |
| 69.     | Training program on "Management of Off-season Survival sources of Pink bollworm in North Zone"  | Rohan, Sirsa, Haryana<br>30 October 2024                                     | Farmers                             | Rasi-ICAR-CICR-CSR project           | 99                     | 1      | Dr Rishi Kumar                      |
| 70.     | Farmers' Field Training & Input distribution                                                    | Vellamadai, Coimbatore<br>11 November 2024                                   | Farmers                             | IRM                                  | 39                     | 21     | Dr K Rameash                        |
| 71.     | Training Program under 'Scientific Social Responsibility Activity'                              | ICAR-CICR, RS, Sirsa<br>18 December 2024                                     | Students                            | DST-SERB (ANRF) Project              | 32                     | 8      | Dr Rishi Kumar and Dr Debashis Paul |



| Scientist                                                                                    | Award/Recognition                                                                                                                                                                                           | Awarded by                                                                                                                                                                               | Conferred on |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Dr. A Manikandan                                                                             | Best Poster Award                                                                                                                                                                                           | ISSLUP, ICAR - NBSS&LUP, Nagpur                                                                                                                                                          | 23-02-2024   |
| Dr. K. Velmourougane                                                                         | Best Scientist Award                                                                                                                                                                                        | ICAR-CICR, Nagpur                                                                                                                                                                        | 01-04-2024   |
| Dr. Shivaji Thube                                                                            | Professor TN Ananthakrishnan-Kannan Nagarajan Award for Young Scientist 2022-23                                                                                                                             | TN Ananthakrishnan Foundation, Chennai                                                                                                                                                   | 04-04-2024   |
| Dr. A Manivannan                                                                             | International Cotton Advisory Committee (ICAC) financial support to participate in World Cotton Research Conference-8 (WCRC8) in Tashkent, Uzbekistan from October 3rd to 10th, 2024.                       | International Cotton Advisory Committee (ICAC), Washington DC                                                                                                                            | 31-07-2024   |
| Dr. Joy Das                                                                                  | Best Oral Presentation Award for work on "RNAi-Based Strategies for Sustainable Pest Management in Cotton" in the International Conference on Emerging Technologies of Agriculture and Allied Sciences-2024 | Society for Agriculture, Allied Sciences and Technology (SAAT), Odisha in association with School of Agriculture, SR university, Warangal and Meadow Agriculture Pvt. Ltd, Uttar Pradesh | 11-08-2024   |
| Rathinavel S., Kavitha R., Surendrakumar A., Kannan B., Kalarani K., Sivakumar S.D., Raja R  | Certificate of registration of Design "Drone mounted precision fertilizer applicator", Design Number: 427801-001, Class: 15-03                                                                              | The Patent Office, Government of India                                                                                                                                                   | 22-08-2024   |
| Dr. A Manivannan                                                                             | DST SERB ITS -International Travel Scheme – Travel grant was awarded for attending World Cotton Research Conference-8 (WCRC8) in Tashkent, Uzbekistan from October 3rd to 10th, 2024                        | DST SERB                                                                                                                                                                                 | 02-09-2024   |
| Rathinavel S., Kavitha R., Surendrakumar A., Raja R., Kannan B., Kalarani K., Sivakumar S.D. | Copy right for "Software program for site specific granular urea application device", Copy Right Registration Number: SW-19517/2024                                                                         | Copy Right Office, Government of India                                                                                                                                                   | 30-09-2024   |
| Dr. Joy Das                                                                                  | Young Scientist Award in Biotechnology in the 10th International Conference on Recent Advances in Agriculture, Engineering, Applied, and Life Sciences for Environmental Stability (RAAALES-2024)           | Agro Environmental Development Society (AEDS) Majhra Ghat, Rampur-244922, Uttar Pradesh, India                                                                                           | 25-10-2024   |

| Scientist                             | Award/Recognition                               | Awarded by                                                                                                                                                | Conferred on |
|---------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Dr. S. Manickam<br>Dr. Vinita Gotmare | Professional Excellence Award                   | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 13-11-2024   |
| Dr. Rakesh Kumar                      | CRDA-Best Cotton Thesis Award-2024              | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 13-11-2024   |
| Dr. Rishi Kumar                       | Scientist of the Year 2024                      | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 13-11-2024   |
| Dr. V.N. Waghmare                     | CRDA- Cotton Scientist of the Year Award 2024   | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 13-11-2024   |
| Dr. K. Velmourougane                  | Best Oral Presentation Award                    | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 15-11-2024   |
| Dr. Shivaji Thube                     | Best Oral Presentation Award                    | Cotton Research and Development Association (CRDA), Hisar                                                                                                 | 15-11-2024   |
| Dr. Shivaji Thube                     | Young Agricultural Scientist Award- 2024        | Dr.B Vasanthraj David Foundation                                                                                                                          | 17-11-2024   |
| Dr. K. Baghyalakshmi                  | Indian Indigenous Emerging Scientist Award-2024 | An Indian Indigenous Society for Sciences & Social Sciences-IISSS and Shri. Shivaji Education Society, Amravati's Dhanwate National College (DNC), Nagpur | 30-11-2024   |



| Areas of Linkages                                                                                                                                                                                  | Institution                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: Refinement of spindle type header prototype for development of a cotton picker                                                                                                            | CSIR-CMERI-CoEFM, Ludhiana                                                                                                                                                     |
| Project: Crop pest surveillance in Maharashtra.                                                                                                                                                    | CROPSAP, Maharashtra                                                                                                                                                           |
| Project: Insecticide Resistance Management (IRM): Dissemination of Pink bollworm Management Strategies.                                                                                            | DAC, Govt of India and SAUs: Dr PDKV Akola, VNMKV Parbhani, MPKV Rahuri, NAU Surat, JAU Junagarh, RVSKVV Gwalior, UAS Dharwad, UAS Raichur, PITSAU Hyderabad and ANGRAU Guntur |
| Project: Genetic diversity of pink bollworm in India                                                                                                                                               | DST-SERB, Ministry of Science And Technology, Govt of India                                                                                                                    |
| Project: Implementation of PVP legislation 2001 and DUS testing of cotton.                                                                                                                         | Protection of Plant Varieties and Farmers' Rights Authority, Govt of India                                                                                                     |
| Project: ICAR project on Seed Production in Agricultural Crops and Fisheries.                                                                                                                      | ICAR, New Delhi                                                                                                                                                                |
| Project: Quantitative estimation of carbon and moisture fluxes over the cotton based agro-ecosystem.                                                                                               | National Carbon Project, ISRO, Hyderabad                                                                                                                                       |
| Project: Transgenic research on plant protection                                                                                                                                                   | CSIR and NBRI, Lucknow                                                                                                                                                         |
| Development of Pheromone technology                                                                                                                                                                | CSIR and IICT, Hyderabad                                                                                                                                                       |
| Value addition Naturally colored cotton                                                                                                                                                            | Dr. PDKV, Akola and ICAR -CIRCOT, Mumbai                                                                                                                                       |
| Student collaboration for research                                                                                                                                                                 | RTMNU, Nagpur                                                                                                                                                                  |
| Production and commercialization of Bt cotton varieties.                                                                                                                                           | Maharashtra State Seeds Corporation Ltd. (Mahabeej), Akola                                                                                                                     |
| HRD of implementation partners of BCI programme in India                                                                                                                                           | Better Cotton Initiative, New Delhi                                                                                                                                            |
| Project: Whitefly management in cotton                                                                                                                                                             | PAU, Ludhiana, HAU, Hisar<br>RAU, Sriganganagar                                                                                                                                |
| Dissemination of weekly advisories and BMPs for cotton                                                                                                                                             | State Agricultural Departments of cotton and State Agricultural Universities pf Cotton growing states                                                                          |
| Strengthening Bt referral lab for BT/HT tests                                                                                                                                                      | DAC, Gol                                                                                                                                                                       |
| Project: Digital landscape diagnostic survey in Maharashtra                                                                                                                                        | Rajiv Gandhi Science and Technology Commission, Mumbai                                                                                                                         |
| Project: Breeding for cotton leaf curl virus                                                                                                                                                       | ATGC, Hyderabad                                                                                                                                                                |
| Project: Evaluation of mating disruption technology for PBW                                                                                                                                        | Rallis India (Pvt Ltd), Bengaluru                                                                                                                                              |
| Project: Bio-efficacy of new Bt cry proteins against PBW populations                                                                                                                               | Bayer Crop Sciences                                                                                                                                                            |
| Project: Variable Rate Technologies (VRTs) for site specific input (pesticide, water & Nitrogen) management                                                                                        | Network Program on Precision Agriculture (NePPA)                                                                                                                               |
| Promotion and commercialization of Bt cotton varieties                                                                                                                                             | M/s Nairuthi Seeds Pvt Ltd., Hyderabad                                                                                                                                         |
| Implementation of the Project Bandhan                                                                                                                                                              | Agrovision Foundation, 402 Govind Apartment, W.H. C. road, Shankar nagar Nagpur                                                                                                |
| Project: Establishing sustainable organic cotton production ventures in selected farms located in Ghatanji of Yavatmal District, Kalmeshwar of Nagpur district and Dhamangaon of Amravati District | Cottonguru MahaFPC Limited, 210, 211, 227, Runwal Commercial Complex, LBS Marg, Mulund (W), Mumbai                                                                             |
| Popularization of Long linted Desi cotton varieties                                                                                                                                                | Better Cotton Initiative, India and VNMKV Parbhani                                                                                                                             |
| Project: To Evaluate Nectariless Rasi Cotton hybrids against pink bollworm and American Bollworm on Cotton                                                                                         | M/s. Rasi Seeds Pvt Ltd                                                                                                                                                        |

| Areas of Linkages                                                                                                                                                                                                           | Institution                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Project: To develop recommendations for cotton High Density Planting System (HDPS) pertaining to canopy and nutrient management through collaborative agronomy TRIALS/DEMOS                                                 | M/s. Rasi Seeds Pvt Ltd, M/s. Nuziveedu Seeds Ltd                                |
| Project: Soil Testing Services related to Regenerative Agriculture                                                                                                                                                          | World Wide Fund For Nature-India (WWF India)                                     |
| Project: Evaluation of mating disruption technology                                                                                                                                                                         | M/s. ATGC Biotech Pvt Ltd                                                        |
| Seed production and commercialization of Bt cotton varieties developed by ICAR -CICR, Nagpur (ICAR -CICR 16 Bt and ICAR -CICR 23 Bt, ICAR-CICR PKV081 Bt (Bt 12), ICAR-CICR RS 2013 Bt (Bt 6), ICAR -CICR GJHV374 Bt (Bt 3) | M/s. ALP GIRI SEED Sciences Pvt Ltd                                              |
| Project: The response of potassium salt of active phosphorous (PSAP) fertilizer grade by foliar spray in Bt hybrid cotton                                                                                                   | M/s. Isha Agro Sciences Pvt. Ltd., Pune                                          |
| Multiplication and commercialization of Bt Cotton Varieties- ICAR-CICR 16 Bt and ICAR-CICR 23 Bt                                                                                                                            | M/s. Pinnacle Agri Sciences Pvt Ltd. Kurnool                                     |
| Multiplication and commercialization of ICAR -CICR 23 Bt Cotton Variety                                                                                                                                                     | M/s. Nirupama Seeds Pvt Ltd. Hyderabad                                           |
| Multiplication and commercialization of Bt Cotton Varieties- ICAR-CICR 16 Bt and ICAR-CICR 23 Bt                                                                                                                            | M/s. Sahaja Crop Sciences Pvt Ltd. Kurnool                                       |
| MoU with M/s ITC Limited for advisories to the farmers associated with the e-Choupal network.                                                                                                                               | M/s ITC Limited, Guntur                                                          |
| Promotion and commercialization of Bt cotton varieties ICAR-CICR GJHV 374 Bt, ICAR -CICR PKV081 Bt and ICAR-CICR 23 Bt                                                                                                      | M/s Dinkar Seeds Pvt Ltd. Himatnagar, Gujarat                                    |
| Use of Entomopathogenic fungi for control of Nematodes in cotton                                                                                                                                                            | ICAR- Central Plantation Crops Research Institute (ICAR-CPCRI), Kasargod, Kerala |
| Non-GM cotton varieties to organic cotton growers in Central Southern part of India                                                                                                                                         | Welspun Foundation for Health and Knowledge (WFHK), Welspun, Kutch, Gujarat      |



### Salient Achievements 2024

#### List of non-Bt Cotton varieties and hybrids identified by VIC in 2024

| Name of entry | Category    | Zone    | Situation | Remarks       |
|---------------|-------------|---------|-----------|---------------|
| KR 149        | Desi hybrid | North   | Irrigated |               |
| KR 150        | Desi hybrid | North   | Irrigated |               |
| F 2743        | Hirsutum    | North   | Irrigated |               |
| FDK 324       | Arboreum    | North   | Irrigated |               |
| TSH 387       | Hirsutum    | South   | Irrigated |               |
| CNH 17395     | Hirsutum    | Central | Rainfed   | Colour Cotton |
| CNA 1092      | Arboreum    | Central | Rainfed   | Colour Cotton |

#### List of non-Bt Cotton varieties and hybrids notified in 2024

| Name of the variety                    | Category           | Gazette no.    | Date       |
|----------------------------------------|--------------------|----------------|------------|
| Nandyal Cotton 26 (NDLH 2056- 4)       | <i>G. hirsutum</i> | S. O. 1560 (E) | 26-03-2024 |
| Nandyal Cotton 27 (NDLA 3104-4)        | <i>G. arboreum</i> | S. O. 1560 (E) | 26-03-2024 |
| Nandyal Cotton 28 (NDLA-3116-3)        | <i>G. arboreum</i> | S. O. 1560 (E) | 26-03-2024 |
| Phule Shubhra (RHB 1623)               | H × B              | S. O. 1560 (E) | 26-03-2024 |
| Phule Ekata (RHB-1008)                 | H × B              | S. O. 1560 (E) | 26-03-2024 |
| GN Cot 27 (Surti Sonu) (GShv 331/14)   | <i>G. hirsutum</i> | S. O. 1560 (E) | 26-03-2024 |
| Narmada Gold (G. Cot. 31) (GBhv 356)   | <i>G. hirsutum</i> | S. O. 1560 (E) | 26-03-2024 |
| TVH 007                                | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |
| PA 833                                 | <i>G. arboreum</i> | S. O. 4388 (E) | 08-10-2024 |
| PDKV Dhawal (AKA 2013-8)               | <i>G. arboreum</i> | S. O. 4388 (E) | 08-10-2024 |
| TSH 387 (SVPR 7)                       | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |
| PBD 88                                 | <i>G. arboreum</i> | S. O. 4388 (E) | 08-10-2024 |
| Shalini (CNH-17395) (CICR-H Cotton 58) | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |
| CNH 18529 (CICR-H NC Cotton 64)        | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |
| CICR-A NC Cotton 67 (CNA 1092)         | <i>G. arboreum</i> | S. O. 4388 (E) | 08-10-2024 |
| NH 677                                 | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |
| VPT 2 (TVH 002)                        | <i>G. hirsutum</i> | S. O. 4388 (E) | 08-10-2024 |

#### List of Bt Cotton varieties and hybrids identified by VIC in 2024

| S. No. | Name of entry   | Category | Zone    | Situation |
|--------|-----------------|----------|---------|-----------|
| 1      | ACH 559-2 BGII  | H×H      | North   | Irrigated |
| 2      | DC 5417 BGII    | H×H      | North   | Irrigated |
| 3      | KCH 9355 BGII   | H×H      | North   | Irrigated |
| 4      | RCH997BGII      | H×H      | North   | Irrigated |
| 5      | Rasi Max001BGII | H×H-C    | North   | Irrigated |
| 6      | Rasi Max003BGII | H×H-C    | North   | Irrigated |
| 7      | ACH 555-2 BGII  | H×H      | Central | Irrigated |
| 8      | DC 5100 BGII    | H×H      | Central | Irrigated |
| 9      | JKCH 18568 BGII | H×H      | Central | Irrigated |



| S. No. | Name of entry   | Category | Zone    | Situation |
|--------|-----------------|----------|---------|-----------|
| 10     | RCH965BGII      | H×H      | Central | Irrigated |
| 11     | RCH999BGII      | H×H      | Central | Irrigated |
| 12     | SS 1188 BGII    | H×H      | Central | Irrigated |
| 13     | US 711 BGII     | H×H      | Central | Irrigated |
| 14     | ARCH 844 BGII   | H×H      | Central | Rainfed   |
| 15     | BIO 6802 BGII   | H×H      | Central | Rainfed   |
| 16     | DC 5100 BGII    | H×H      | Central | Rainfed   |
| 17     | DC 5101 BGII    | H×H      | Central | Rainfed   |
| 18     | Trumpcard BGII  | H×H      | Central | Rainfed   |
| 19     | DC 5101 BGII    | H×H      | Central | Rainfed   |
| 20     | Rasi Max033BGII | H×H-C    | Central | Rainfed   |
| 21     | ACH 981-2 BGII  | H×H      | South   | Irrigated |
| 22     | ARCH 6651 BGII  | H×H      | South   | Irrigated |
| 23     | BIO 6938 BGII   | H×H      | South   | Irrigated |
| 24     | DC 5100 BGII    | H×H      | South   | Irrigated |
| 25     | JKCH 18568 BGII | H×H      | South   | Irrigated |
| 26     | KCH 9111 BGII   | H×H      | South   | Irrigated |
| 27     | KCH 9122 BGII   | H×H      | South   | Irrigated |
| 28     | NBC-2020 BGII   | H×H      | South   | Irrigated |
| 29     | RCH999BGII      | H×H      | South   | Irrigated |
| 30     | VSCH 219 BGII   | H×H      | South   | Irrigated |
| 31     | US 711 BGII     | H×H      | South   | Irrigated |
| 32     | SS 1188 BGII    | H×H      | South   | Irrigated |
| 33     | Rasi Max006BGII | H×H-C    | South   | Irrigated |
| 34     | DC 5100 BGII    | H×H      | South   | Rainfed   |
| 35     | SS-963 Bt2      | H×H      | South   | Rainfed   |
| 36     | BIO 6802 BGII   | H×H      | South   | Rainfed   |
| 37     | ARCH 3224 BGII  | H×H-C    | South   | Rainfed   |
| 38     | VSCH 139 BGII   | H×H-C    | South   | Rainfed   |
| 39     | Rasi Max033BGII | H×H-C    | South   | Rainfed   |
| 40     | Rasi Max066BGII | H×H-C    | South   | Rainfed   |
| 41     | PKV 081 Bt      | Hirsutum | South   | Rainfed   |
| 42     | ARCH 2020 BGII  | H×H-C    | North   | Irrigated |
| 43     | C9403 BG-II     | H×H-C    | North   | Irrigated |
| 44     | Rasi Max039BGII | H×H-C    | North   | Irrigated |
| 45     | Rasi Max036BGII | H×H-C    | North   | Irrigated |
| 46     | ACH 27-2 BGII   | H×H-C    | Central | Irrigated |
| 47     | NCS 8022 Bt2    | H×H-C    | Central | Irrigated |
| 48     | Rasi Max069BGII | H×H-C    | Central | Irrigated |
| 49     | VSCH 139 BGII   | H×H-C    | Central | Rainfed   |
| 50     | KCH 9111 BGII   | H×H-C    | South   | Irrigated |
| 51     | Rasi Max069BGII | H×H-C    | South   | Irrigated |
| 52     | ACH 27-2 BGII   | H×H-C    | South   | Irrigated |
| 53     | ACH 999-2 BGII  | H×H      | North   | Irrigated |
| 54     | ACH 981-2 BGII  | H×H      | Central | Irrigated |
| 55     | ACH 909-2 BGII  | H×H      | South   | Irrigated |
| 56     | D 1199 BGII     | H×H      | South   | Irrigated |
| 57     | US 707 BGII     | H×H      | South   | Irrigated |

## Research Highlights

### Crop Production (2024-25)

- Optimization of spacing and nutrient requirements is a pre-requisite for releasing promising genotypes. Hence, the agronomic requirements of pre-released arboreum hybrids KR-152 and CISAA 19-4 in the North Zone, pre-released *G. arboreum* variety JLA 1204 and CNA 20402 in the Central Zone, and DDCC 2151 in the South Zone were determined.
- Agronomic requirement studies for 62 pre-released genotypes comprising 57 intra *hirsutum* Bt hybrids, 3 interspecific Bt hybrids, and 4 *hirsutum* varieties were conducted as per the proposed environment.
- In ELS cotton (*G. barbadense* genotypes) assessment, CICR B-45 produced higher seed cotton yield than Suvir at Chamarajnagar,
- Trials on Conservation agriculture in the North zone revealed that 100% wheat residue incorporation by rotavator followed by sowing of cotton in kharif and 100% cotton residue incorporation after picking + sowing of wheat crop through Super seeder in one go during rabi registered higher seed cotton yield @ 16.3 and 31.3 percent and 33.0 and 20.4 per cent higher wheat grain yield at Faridkot and Bathinda in cotton – wheat rotation, respectively.
- In yield maximization trial, 35 per cent higher seed cotton yield was recorded with Closer planting + Detopping + Pruning of monopodia + Two sprays of mepiquat chloride @ 25 g a.i. at 45 and 60 DAS + Drip fertigation + straw/crop residue mulch @ 5 t/ha at Bathinda (2573 kg/ha).
- Maximum Seed cotton yield was achieved in Surat by adopting closer planting 90 x 30 cm + Detopping at 100 cm height + Two sprays of Mepiquat chloride @ 25 g a.i. at 45 and 60 DAS (2819 kg/ha). In Junagadh, detopping at 100 cm height + pruning of monopodia at 45 DAS + two sprays of mepiquat chloride @ 25 g a.i. at 45 and 60 DAS + polymulch was promising.
- A package that included closer planting + Detopping + Pruning of monopodia + Two sprays of mepiquat chloride @ 25 g a.i. at 45 and 60 DAS + Drip fertigation + polymulch was identified as yield maximization techniques for Rahuri (5138 kg/ha), Coimbatore (2426 kg/ha) and, Srivilliputhur (2585 kg/ha)
- in the rainfed trial of yield maximization, 46.29, 48.67, 39.13 and 39.24% higher seed cotton yield was achieved by adopting of Closer planting + Detopping at 100 cm height + Pruning of monopodia at 45 DAS + Two sprays of Mepiquat chloride @ 25 g a.i. at 45 and 60 DAS at Akola (2879 kg/ha), Bhawanipatna (3824 kg/ha), LAM (2784 kg/ha) and Chamarajnagar (2019 kg/ha), respectively.
- In Nandyal, 30.9 % higher seed cotton yield (2296 kg/ha) was registered with Closer planting + Detopping at 100 cm height + Two sprays of Mepiquat chloride @ 25 g a.i. at 45 and 60 DAS. Closer planting + Detopping at 100 cm height + Pruning of monopodia at 45 DAS recorded 39.6 % higher seed cotton yield in Nanded (3425 kg/ha)
- The drought management strategy of the Broad Bed Furrow with Glycine Betaine @100 ppm spray after depletion of 75 % soil moisture was promising at Dharwad (1784 kg/ha) and Bhawanipatna (2661 kg/ha).
- Adoption of Broad Bed Furrow with Salicylic acid spray @100ppm after depletion of 75% soil moisture performed well in Akola (2810 kg/ha). In Khandwa (1870 kg/ha) and Chamrajnagar (1868 kg/ha), the results revealed that Ridges & Furrow with Salicylic acid @ 100 ppm single spray after depletion of 75 % soil moisture was promising
- Land configuration of the Broad Bed furrow followed by application of 20 kg/ha extra nitrogen and potassium after drainage of water logging field identified as waterlogging management techniques in Bathinda (2061 kg/ha), Junagadh (3545 kg/ha), and Rahuri (2778 kg/ha). In Surat, land configuration with ridges and furrow and application of extra 20 kg/ha of nitrogen and potassium after drainage of water logging field out performed (1974 kg/ha).
- The results of the canopy management trial found that application of mepiquat chloride@45ppm at square initiation and 15 days after first spray and 15 days after second spray (need based) with Detopping registered 34.40, 29.33, 36.45, 23.7, 38.93, 21.35 and 26.9 percent higher seed cotton yield and reduced the plant height to 30.0, 29.7, 27.1, 4.30, 28.7, 24.0 and 36.8 percent respectively in Sriganganagar, Junagadh, Bhawanipatnam, Khandwa Nandyal, Srivilliputhur and Raichur.
- Mepiquat chloride application @ 45ppm at square initiation and 15 days after first spray + Detopping recorded 45.89, 13.7, 16.4, 21.3, 18.1, and 36.8 percent higher seed cotton yield and reduced plant height to 11.7, 52.9, 20.6, 27.3, 22.8 and 24.42 percent at Rahuri, Nanded, Akola, Dharwad, Coimbatore and Chamrajnagar, respectively
- Management of square shedding in cotton revealed that shedding percentage was reduced to 59.1% and Seed cotton yield was increased of 12.0% with IAA @ 25ppm+ kinetin @ 20ppm (955 kg/ha) in Bathinda. In Dharwad, the seed cotton yield (kg/ha) was increased to 31.4% by Silver thiosulphate application @ 7.5 $\mu$ M (2562 kg/ha) with fruit shedding percentage reduced to 19.7%. In Sirsa, Glycine betaine application @ 3 g/ha increased the cotton yield by 27.4% and reduced the boll shedding by 38.6%. In Surat, the application of IAA @ 25 ppm + kinetin @ 20 ppm increased the yield by 12.0%, and reduced the

boll shedding by 11.9%.

- Drone application of KNO<sub>3</sub> revealed that the 8% concentration is comparable with the manual application of 2% KNO<sub>3</sub> in Surat and Dharwad
- Detopping on the 20<sup>th</sup> node performed well at Surat (911 kg/ha). Homobrassinolide @ 0.2 ppm at 45 and 60 DAS along with Detopping on 20<sup>th</sup> node performed well at Dharwad (1294 kg/ha) with respect to the late sown arboreum.
- The HAU Bt 11 and HAU Bt 12 genotypes were identified for drought tolerance in Hisar. The crude oil, crude protein, and gossypol contents decreased significantly under drought conditions in all Hisar genotypes. The H 1353, HAU Bt 11, and HAU Bt 12 genotypes performed better under salinity conditions in Hisar.
- Lower gossypol contents were observed in G. Cot-16 and GSV-419 (0.65 %) under irrigated conditions. Under rainfed conditions, GSV-419 and LRA-5166 showed lower gossypol. The highest protein content was observed in LRA-5166 (19.92%) under rainfed conditions in Surat.
- Higher ethylene concentration (0.166) was found with Thidiazuron @ 500 ppm + Diuron @ 400 ppm (T10) spray, leading to the degradation of chlorophyll content in defoliant experiments. Low content of H<sub>2</sub>O<sub>2</sub> and MDA in treatments sprayed with salicylic acid (0.5 mm) indicated the recovery of plants from waterlogged conditions.
- Mepiquat chloride @ 45 ppm at square initiation and 15 days after first spray, followed by Detopping showed higher phenol content.
- Primary metabolites (carbohydrates and protein) secondary metabolites (tannin, phenols and flavonoid) were significantly increased by the application of salicylic acid at 100 ppm and Glycine Betaine at 100 ppm sprays for drought management in Dharwad
- Significant positive correlation between phenol content with locule damage and green boll damage was observed
- Biochemical parameters like Protein, reducing sugar, Phenol, Tannin, and Flavanol were increased in all parts of the plants at peak periods of pink boll infestation in Dharwad.

#### Crop Protection-Entomology (2024-25)

##### Screening of breeding materials for resistance to insect-pests:

Promising sucking pest-tolerant entries for preliminary screening (National & Zonal Trials)

- North zone: In *G. arboreum*, 4 entries for leafhopper, 5 entries for whitefly, and 6 entries for thrips were identified as highly resistant/tolerant.

- Central zone: In *G. hirsutum*, 11 entries for leafhopper, 16 entries for whitefly, and 10 entries for thrips were identified as highly resistant/resistant and tolerant. In *G. arboreum*, 8 entries for leafhopper, 8 entries for whitefly and 6 entries for thrips were identified as highly resistant/tolerant. In Barbadense, 1 each entry for the leafhopper, whitefly, and thrips was identified as highly resistant/tolerant.
- South zone: In *G. hirsutum*, 10 entries for leafhopper and 6 entries for thrips were identified as highly resistant/ tolerant. In *G. arboreum*, 5 each entries for leafhopper, whitefly, and thrips were identified as highly resistant/tolerant. In Barbadense, 1 each entry for the leafhopper and whitefly was identified as highly resistant/tolerant.

##### Promising sucking pest-and bollworm-tolerant entries identified for the development of a repository through advance screening:

- **North zone:** 5 entries for the leafhopper, 10 entries for the whitefly, and 1 entry for thrips were found to be promising.
- **Central zone:** 2 entries for the leafhopper and 1 entry for the thrips were found to be promising.
- **South zone-** 2 entries for the leafhopper found to be promising
- **South zone-** 01 entry for PBW was found to be promising.

##### Promising sucking pest tolerant entries identified for development of repository through advance screening and basis of resistance/tolerance:

- **North zone:** 8 entries for the whitefly and 2 entries for the thrips were found to be promising.
- **Central zone:** 8 entries for the leafhopper and 4 entries for the thrips were found to be promising.
- **South zone:** 11 entries for the leafhopper were found to be promising.

##### Seasonal dynamics of key pests in relation to climatic conditions recorded in North, Central, and South zone centres on N-Bt and Bt genotypes under unprotected conditions:

- **Leafhopper:** In North zone, peak activity was recorded during 27th-32nd SMW except Faridkot (36th SMW) with a range of 0.00-14.40 jassid/3 leaves; in the Central zone, 36th-46th SMW but at most of the locations it peaked between 42nd-46th SMW with a range of 0.00-33.30 jassid/3 leaves and between 39th-49th SMW; in south zone, at most of the locations it peaked between 46th-49th SMW with a range of 0.00-31.30 jassid/3 leaves.
- **Thrips:** In North zone, peak activity was recorded during 29th-30th SMW with a range of 0.00-213.00 thrips/3 leaves, in the Central zone peaked between 30th-43rd SMW but at most of the locations it was

between 38th-41st SMW with a range of 0.00-49.60 thrips/3 leaves and peak activity between 38th-48th SMW, in the south zone, but it was between 38th-41st SMW at most of the locations with a range of 0.00-88.40 thrips/3 leaves.

- **Whitefly:** In the North zone, peak activity was recorded during 29th SMW at most of the locations, except, for Hisar (39th SMW) & Sriganganagar, (36th SMW) with a range of 0.53-120.90 whitefly/3 leaves; 37th-52nd SMW in the central zone and at most of the locations it was between 40th-47th SMW with a range of 0.00-36.30 whitefly/3 leaves and peaked between 37th-51st SMW in the south zone but it was between 40th-45th SMW at most of the locations with a range of 0.00-48.87 whitefly/3 leaves.
- **Aphids:** Peak activity in the central zone was recorded during 30th-52nd SMW but at most of the locations it was between 51st-52nd SMW with a range of 0.00-117.65 aphids/3 leaves and between 34th-51st SMW with a range of 0.00-85.00 aphids/3 leaves in the Southern zone.
- **Natural Enemies:** Maximum population was recorded during 29th-33rd SMW at all the locations except Sriganganar (38th SMW) with a range of 0.00-25.50 predators/plant in the North zone, highest population recorded between 49th-52nd SMW at majority locations of the central zone with a range of 0.00-7.80 predator/plant and between 35th-38th SMW at majority locations of South zone with a range of 0.00-5.56 predator/plant.

#### Bollworms dynamics (non-Bt):

- **North zone:** Negligible population and damage to fruiting bodies due to *Earias* spp. and *H. armigera* were recorded. Pink bollworm larval recovery and green boll damage (%) ranged between 0.00-20.00/50 green bolls and 0.00-27.00 percent, respectively, and were maximum at Sirsa.
- **Central zone:** Larval populations of *H. armigera*, *Earias* spp., and *S. litura* ranged from 0.00-2.20, 0.00-3.25, and 0.00-2.00 per 5 plants, respectively. Fruiting body and green boll damage due to bollworms other than PBW ranged between 0.00-28.55 & 0.00-15.00 percent, respectively. Rosette flowers (%) due to PBW, larval recovery of pink bollworm (Nos.), and green boll damage (%) ranged between 0.00-23.83 percent (Highest at Nanded), 1.63-17.64/50 green bolls (Maximum at Akola) & 10.67-40.20 percent (Highest at Khandwa), respectively.
- **South zone:** Larval populations of *H. armigera*, *Earias* spp., and *S. litura* ranged from 0.00-5.20, 0.00-1.33 and, 0.00-1.00 per 5 plants, respectively. Fruiting body damage ranged between 0.00-60.65 (%). Rosette flowers due to pink bollworm, pink bollworm larval recovery (Nos), and green boll damage was recorded with a range of 0.00-39.30 percent, 8.01-28.25/50 green bolls and 7.41-66.88 percent (highest

at Raichur), respectively.

#### Bollworms dynamics (Bt cotton):

- **North zone-pink bollworm larval recovery (Nos) and green boll damage (%)** ranged between 0.00-12.50/50 green bolls and 0.00-21.00 percent, respectively, and were maximum at Sirsa.
- **Central zone:** Larval populations of *H. armigera*, *Earias* spp., and *S. litura* ranged between 0.00-0.60/5, 0.00-0.90/5 s and 0.00-1.20 per 5 plants, respectively. Fruiting body damage (%) and, green boll damage (%) due to bollworms other than PBW ranged between 0.00-21.75 & 0.00-3.47 percent, respectively. Rosette flowers (%) due to PBW, larval recovery of pink bollworm (Nos), and green boll damage (%) ranged between 0.00-20.00 percent (Highest at Nanded), 2.00-15.42/50 green bolls (Maximum at Akola) & 3.00-37.50 percent (Highest at Khandwa), respectively.
- **South zone:** Larval populations of *H. armigera*, *Earias* spp., and *S. litura* ranged from 0.00-1.44, 0.00-0.105 & 0.00-1.11 per 5 plants, respectively. Fruiting body damage (%) ranged between 0.00-42.41 percent. Rosette flowers (%) due to PBW, pink bollworm larval recovery (Nos), and green boll damage (%) were recorded highest at Raichur with a range of 0.00-34.71 percent, 3.85-23.22/50 green bolls & 2.90-43.49 percent, respectively.

#### Farmers' Field Survey on key and emerging pests to support weekly advisory:

- **North zone:** Of the total 2234 surveyed locations, whiteflies crossed the ETL at 771 (34.51%); PBW at 456 (20.41%); Thrips at 278 (12.45%); and Leafhopper at 101 locations (4.52%) locations. Whiteflies and pink bollworm were key-yield limiting pests during the season.
- **Central zone:** Of the total 3699 locations surveyed, PBW crossed the ETL at 880 (23.79%); Aphids at 597 (16.14%); Leafhopper at 478 (12.92%); Thrips at 448 (12.11%); Whitefly at 148 (4.00%); Shoot weevil at 39 (1.05%), *S. litura* at 12 (0.32%) and Mirid bugs at 08 (0.22%) locations. Pink bollworm and aphids were key-yield limiting pests during the season.
- **South zone:** Of the total 3704 locations surveyed, PBW crossed the ETL at 473 (12.77%); Leafhopper at 435 (11.74%); Thrips at 266 (7.18%); Aphids at 85 (2.29%); Mirid bugs at 68 (1.84%); *S. litura* at 22 (0.59%); Shoot weevil at 19 (0.52%), and Whitefly at 10 (0.27%) locations. Pink bollworms and leafhoppers were the key yield-limiting pests during the season.

#### Evaluation of persistence of insecticides against PBW:

- **North zone:** In the North Zone, studies revealed variations in insecticide persistence. Profenofos at Sirsa, spinetoram at Hisar & Faridkot and emamectin

benzoate at Bathinda showed the highest persistence.

- **Central zone:** Field-cum-laboratory studies in the zone revealed varying insecticide persistence across different locations. Chlorantraniliprole at Akola, spinetoram at Junagadh, emamectin benzoate at Nanded and profenofos at Surat were the most persistent insecticides for managing pink bollworm.
- **South zone:** Field and pot-cum-laboratory studies in the zone revealed variations in insecticide persistence across locations. Cypermethrin and bifenthrin at Dharwad, Chlorantraniliprole and spinetoram at Coimbatore and Lamguntur, and fenpropathrin and cypermethrin at Raichur showed the highest persistence. Similar trends were observed at higher application doses (10% & 25% above field dose) and under pot-cum-laboratory conditions.

#### **Evaluation of persistence of insecticides against insect- pests of cotton (through conventional & drone application):**

- **Central zone:** At majority of the locations, the different insecticides applied both through drone and conventional methods were statistically non-significant. In Junagarh and Nagpur, insecticide application with drones was more effective than conventional application. Among the tested insecticides, flonicamid in both drone and conventional application technique followed by profenophos in drone application technique and diafenthiuron in conventional application technique were most effective for sucking pests. Spinetoram was the most effective insecticide for PBW, followed by emamectin benzoate in drones and conventional application techniques. Phytotoxicity was also observed in Nagpur when insecticides (profenofos & quinalphos) were applied through drones and conventional application with more than 10 percent of field dose.
- **South zone:** Drone application provided better pest reduction than conventional spraying. Among the tested insecticides, spinetoram and diafenthiuron showed promising results in the management of sucking pests using drone and conventional methods of application. Similarly, in the case of PBW, spinetoram followed by chlorpyriphos was found to be better with the drone method of insecticides application, whereas in conventional spraying, emamectin benzoate followed by profenophos were the most effective insecticides.

#### **To Evaluate and identify suitable interventions for seed treatment in organic cotton production:**

- **North zone:** For all the sucking pests i.e., whitefly, leafhopper, and thrips treatment T-10 (Seed treatment with insecticide) was found to be most effective. However, among non-chemical interventions T-7

(*Beauveria bassiana* + *Pseudomonas fluorescens*) was found to be most effective for whitefly, leafhopper, and thrips at majority of the North zone locations.

- **Central zone:** For sucking pests i.e., whitefly, leafhopper, and thrips treatment T-10 (Seed treatment with insecticide) was most effective. However, among the non-chemical methods, treatment with T-3 (*Beauveria bassiana*) was the most effective followed by T-1 (Soil application of neem cake) & T-2 (*Pseudomonas fluorescens*).
- **South zone:** For the sucking pests i.e., whitefly, leafhopper, and thrips treatment T-10 (Seed treatment with insecticide) was most effective. However, among the non-chemical methods, treatment T-2 (*Pseudomonas fluorescens*) & T-6 (*Lecanicillium lecanii* + *Pseudomonas fluorescens*) were the most effective followed by T-7 (*Beauveria bassiana* + *Pseudomonas fluorescens*).

#### **Validation of an IPM module-based on the existing interventions for organic cotton production:**

- **North zone:** Module 4 (IPM) recorded the lowest pest population and Module 1 (Completely on-farm resources) recorded highest predator's population. Among the three organic modules, Module 3 [Intensive Module, 30% on-farm, 70% off-farm external inputs (cost basis)] recorded with comparatively less insect-pest incidence.
- **Central zone:** Module 4 (IPM) recorded the lowest pest population and the highest yield. Module 1 (Completely on-farm resources) recorded highest predator's population. Among the three organic modules, Module 2 (LEISA module - low external 30% input sustainable model) recorded comparatively less insect-pest incidence.
- **South zone:** Module 4 (IPM) & Module 5 (FP) recorded the lowest pest population, and among the three organic modules, Module 3 {Intensive Module, 30% on-farm, 70% off-farm external inputs (cost basis)} recorded with comparatively less insect-pest incidence and gave the highest yield.

#### **Evaluation of Mak Adjuvol (Mineral & Paraffin Oil) as an insecticide adjuvant in all zones:**

- **Whitefly:** Flonicamid 50 WG + MakAdjuvol @1.5% was found to be the most effective.
- **Thrips:** Spinetoram 11.7 SC + MakAdjuvol @1.5% was found to be the most effective.
- **Leafhopper:** Flonicamid 50 WG + MakAdjuvol @1.5% was found to be the most effective.
- **Aphid:** Flonicamid 50 WG + MakAdjuvol @1.5% was found to be the most effective.
- MakAdjuvol @ 0.75% and 1.5% added with insecticides improved efficacy up to some extent in comparison to insecticide application without

adjovol.

#### **Impact of Agronomic intervention on insect pest dynamics under HDPS:**

- **North zone:** HDPS with IPM consistently recorded the lowest pest populations, least boll damage, and highest fruiting body retention at different locations. Similarly, the highest yield was observed in HDPS with IPM.
- HDPS (90 x 15cm) recorded the lowest sucking pest population, followed by IPM applied HDPS + De-topping (Sirsra). The lowest level of green boll damage (%) due to PBW was recorded in IPM applied De-topping at majority locations. While fruiting body retention was highest in cyclanilide + MC followed by De-topping (Sirsra) along with IPM interventions. Highest yield was obtained from IPM intervened HDPS + De-topping treatment.
- **Central zone:** HDPS with IPM consistently recorded the lowest pest population and the least green boll damage due to PBW compared to HDPS alone. Similarly, the fruiting body retention was significantly higher and highest yield was also obtained from HDPS with IPM.
- Among all canopy management treatments related to HDPS, De-topping was the most effective treatment for reducing the pest population and green boll damage (%) due to PBW. While highest fruiting body retention was recorded in IPM applied HDPS + chlormequat chloride. Among individual interventions of canopy management highest yield was obtained from IPM applied HDPS + De-topping treatment.
- **South zone:** HDPS with IPM consistently recorded lower pest populations compared to HDPS alone at majority locations. HDPS with IPM also resulted in the lowest green boll damage (%) due to PBW, higher fruiting body retention, and higher yield.
- Among all canopy management treatments related to HDPS, De-topping was the most effective treatment in reducing the pest population and green boll damage (%) due to PBW, followed by cyclanilide + MC. The highest fruiting body retention was recorded in HDPS + chlormequat chloride along with HDPS. Highest yield was obtained from IPM applied HDPS + De-topping treatment.

#### **Crop Protection: Plant Pathology (2024-25)**

- Cotton disease surveillance conducted in 364 villages (5-10 fields in each) of 42 districts in 9 cotton growing states covering all cotton growing zones of India revealed that the major diseases observed during 2024-25 are as under-
- **North Zone:** CLCuD was low in Haryana (17.7%) and Rajasthan (19.1%), severe in Punjab (35.8%), and root rot was low in Haryana (0.4-4.9%) during mid- and late-seasons.

- **Central Zone:** Grey mildew was moderate in Maharashtra (12.9%), Gujarat (11.6%), and Madhya Pradesh (12.3%). Bacterial leaf blight (BLB) was moderate in Maharashtra (9.6%) and slightly high in Gujarat (11.6%). Alternaria leaf spot (ALS) incidence was moderate in Maharashtra (9.6%) and Gujarat (7%). Para wilt was low in Gujarat (5.9%) during mid-season. Target leaf spot (CoLS) was low in Gujarat (1.3%) and moderate in Madhya Pradesh (9.5%) in the late season, while boll rot was low in Maharashtra (1.2%) and moderate in Gujarat (7.6%)

- **South Zone:** Grey mildew was moderate in Karnataka (10.2%) and Tamil Nadu (10.7%). ALS was moderate in Tamil Nadu (9%) and Karnataka (16.7%). BLB was moderate in Karnataka (7.5%) and slightly high in Tamil Nadu (11.9%). Root rot was moderate in Tamil Nadu (8.7%), whereas boll rot was moderate in Tamil Nadu (5.1%) and slightly higher in Karnataka (13.1%).

#### **Disease progress in relation to weather parameters studied at on-station trials conducted and the regression equations developed and validated with the previous year's models:**

- **Disease screening trials:** A total of 150 entries were evaluated in 15 National (5) and Zonal (10) trials showed different reactions against location-specific diseases. However, 14 genotypes, including *G. hirsutum* (11), *G. barbadense* (2), *G. arboreum* (1) showed single and or multiple diseases resistance against CLCuD, ALS, BLB, GM, and CoLS under confirmation field and artificial screening trials.
- Multilocation field trials were conducted and promising disease management treatments were recorded
- Among endophytic BCAs, their combinations and recommended chemicals were evaluated for the management of seed and soil-borne diseases at 8 centers, the application of consortium ECN-1 @ 5g/kg seed + foliar spray @ 5g/lit water at 60 and 90 DAS was found to be superior to other treatments for root rot and foliar disease management.
- Among the six chemical treatments evaluated for management of TSV and its vector-thrips at three centers, the maximum reduction in TSV disease was recorded with need-based spray applications of Tolfenpyrad 15 % EC (1000 ml/ha), followed by Spinetoram 11.70 % SC (420 ml/ha) and Dinotefuron 20 SG (150g/ha).
- Among the 11 CIB&RC-recommended chemicals evaluated as spray applications for the management of foliar diseases at Sriganganagar, Nanded, Khandwa, and Coimbatore, the following treatments were found to be better than the control:
- Bacterial leaf blight- Copper sulphate 47.15% + Mancozeb 30% WDG @ 5 g/ liter of water,



Fluxapyroxad 167 g/liter + Pyraclostrobin 333 g/liter SC @ 0.6 g/liter of water at Coimbatore.

- **Alternaria leaf spot** - Fluxapyroxad 167 g/liter + Pyraclostrobin 333 g/liter SC @ 0.6 g/liter of water and Metiram 55% + Pyraclostrobin 5% WG @ 2 g/liter and Azoxystrobin + Difenoconazole @1 ml/L of water at Nanded and Coimbatore
- **Grey mildew** - Fluxapyroxad 167 g/liter + Pyraclostrobin 333 g/liter SC @ 0.6 g/liter, Kresoxim methyl 44.3% SC @ 1 ml/liter of water and Metiram + Pyraclostrobin @.2g/L of water at Khandwa, Nanded and Coimbatore.
- **Target leaf spot** - Fluxapyroxad 167 g/liter + Pyraclostrobin 333 g/liter SC @ 0.6 g/liter of water and Azoxystrobin 18.2% w/w + Difenoconazole 11.4% w/w SC @ 1 ml/liter of water at Khandwa
- **Boll rot** - Fluxapyroxad 167 g/Liter + Pyraclostrobin 333 g/liter SC @ 0.6 g/L, Metiram 55% + Pyraclostrobin 5% WG @ 2 g/liter, Propineb 70% WP @ 2.5 g/liter and Copper oxychloride @ 2.5 g/L of water at Sriganganagar, Khandwa, Nanded, and Coimbatore
- **Crop loss estimation studies were conducted at on-station trials:** The average reduction in seed cotton yield (SCY) corresponding to CLCuD severity grades was estimated to be grades 1, 2, 3, 4, 5 and 6 was 7.8, 21.1, 37.4, 49.5, 53, and 80.2%, respectively, in Haryana, Rajasthan, and Punjab. The SCY reductions corresponding to TSV grades 1, 2, 3, and 4 were 29.5, 49.8, 53.1, and 41.7%, respectively, in Rahuri, Guntur, and Coimbatore.

#### Concluded Experiments/Recommendations

- The pooled results of three year trials conducted at TNAU, Coimbatore (2022-23-2024-25) depicted need-based spray application of Propineb 70% WP @ 2.5 g/liter, Fluxapyroxad + Pyraclostrobin @ 0.6 g/L, and Azoxystrobin + Difenoconazole @1 ml/L of water was found promising for Alternaria leaf blight management, while for grey mildew management, Kresoxim methyl 44.3% SC @ 1 ml/liter, Azoxystrobin + Difenoconazole @ 1 ml/L and Fluxapyroxad +

Pyraclostrobin @ 0.6 g/L of water were found better than other treatments. Copper sulphate 47.15% + Mancozeb 30% WDG @ 5 g/ liter, Fluxapyroxad + Pyraclostrobin @ 0.6 g/L, and Copper oxychloride @ 2.5 g/L of water for bacterial leaf blight and Fluxapyroxad + Pyraclostrobin @ 0.6 g/L, Metiram + Pyraclostrobin @ 2 g/L, and Azoxystrobin + Difenoconazole @ 1 ml/L for minimizing boll rot diseases were found superior treatments at Coimbatore, Tamil Nadu.

- The pooled results of three-year field experiments conducted at 8 centers in all 3 zones for management of seed and soil-borne diseases (2022-23-2024-25) showed that the highest reduction in plant mortality (65.7, 62.7%) at 120 DAS was achieved with treatment T-5, 6 (*Trichoderma* spp. Rf-B/Th-11 as seed (5g/kg) + soil treatment (1kg. acer) and foliar spray (2 ml/L) plus Mak Adjuvol @1.5% or 0.75% at 60 and 90 DAS), followed by T-4 (*Trichoderma* spp. Rf-B/Th-11 as seed + soil treatment and foliar spray at 60 and 90 DAS) and T-3 (*Trichoderma* spp. -Rf-B/Th-11 as seed + soil treatment). The seed germination rate was ranged from 87.2% to 88% in treatments T-3 to T-7 (seed and soil treatment with *Trichoderma* spp. Rf-B/Th-11).

#### Annual Group Meeting of AICRP on Cotton

A National-level Annual Group Meeting of the All India Co-ordinated Research Project (AICRP) on Cotton was jointly organized by Dr. PDKV, Akola, and ICAR-CICR at Vastantrao Naik State Agricultural Extension Management Training Institute (VANAMATI), Nagpur. The inaugural session held on 5<sup>th</sup> April 2024 was presided over by the Hon'ble Vice Chancellor Dr S.R. Gadakh, Dr. PDKV, Akola and Dr. T.R. Sharma, Hon'ble Deputy Director General (Crop Science), ICAR, New Delhi. Special invitees included Dr. C. D. Mayee, Chairman, Program Monitoring and Advisory Committee & Ex-Chairman ASRB; Dr. D. K. Yadava, Assistant Director General (Seeds) and Dr Prashant K Dash, ADG (Commercial Crops); ICAR, New Delhi; Dr S. K. Shukla, Director, ICAR-CIRCOT, Mumbai; Dr. Y.G. Prasad, Director ICAR-CICR, Nagpur, and Dr.V. K Kharche, Director of Research, Dr. PDKV Akola.



### Trainings

#### On-campus and Off-campus training

Eighty-five short duration (1, 3 and 5 days) on-campus and off-campus training courses were conducted in

different disciplines for practicing farmers, rural youth, and extension functionaries. In total 4,454 participants, including 1,079 SC/ST participants benefited from the training programs.

**Table: Details of training conducted**

| Clientele               | No. of Courses | Male | Female | Total participants |
|-------------------------|----------------|------|--------|--------------------|
| Farmers & farm women    | 59             | 1976 | 946    | 2981               |
| Rural youths            | 16             | 642  | 298    | 956                |
| Extension functionaries | 4              | 124  | 42     | 170                |
| Skill Training          | 6              | 254  | 87     | 347                |
| Vocational Training     | 0              | 0    | 0      | 0                  |
| Total                   | 85             | 2996 | 1373   | 4454               |



### Training Programme

1. The KVK, ICAR- CICR, Nagpur conducted a two-day training program during 23-24 Oct, 2024 for Board of Directors (BODs), Chief Executive Officers (CEOs), and accountants of Farmer Producer Organization (FPOs) on "Sustainable Agribusiness, skill development for entrepreneurs and financial literacy" in collaboration with Savitribai Phule Mahila Ekatm Samaj Mandal (SPMESM), Chhatrapati Sambhajinagar. Dr. Y.G. Prasad, Director, ICAR-CICR, Nagpur was the Chairman of the function and Sh. Ravindra Manohare, SAO, Agriculture Department, Nagpur, was the Chief Guest of the inauguration

function of the 2-day training program and, Dr. Ramkrushna, G. I., Sr. Scientist and Head KVK, Nagpur, Dr. Suhas Ajgaokar, Secretary, SPMESM, C. Sambhajinagar and other KVK staff were present on this occasion. Approximately 50 participants from six FPOs attended the training to better understand sustainable practices of agriculture and allied enterprises in establishing agribusiness.

2. The five-day training program on "Climate Resilient Agricultural Practices for Cotton Production & Allied Enterprises" was organized by the KVK, ICAR-CICR, Nagpur. The program was held from 26th September to 3rd October 2024.



The venue for the training sessions was the Training Hall of KVK, ICAR-CICR, Nagpur. During the training programme, 40 participants from Ambuja Foundation were present.

### Cluster Front Line Demonstrations of Oilseed Crop enterprises

Three CFLDs on oilseeds (i.e., Soybean (NRC-130, Mustard PM-32 and Groundnut TAG-24) was conducted in the adopted villages of Nagpur district, viz. Kanolibara, Kargaon, and Bothli. Several extension activities like field day, field visits of farmers and extension functionaries, group discussion and scientist farmers meet etc. were conducted for effective implementation of technologies. These demonstrations

were conducted in 350 farmer fields covering a 140 ha area.



### On Farm Trials (OFTs)

| Sr. No. | Discipline         | OFT Conducted                                                                                     | No. of farmers | Area (ha)/No. of Animals |
|---------|--------------------|---------------------------------------------------------------------------------------------------|----------------|--------------------------|
| 1.      | Agronomy           | Assess the performance of different Soybean variety suitable for Nagpur District                  | 13             | 5.2                      |
| 2.      | Agronomy           | Assessment of improved varieties of pigeon -pea for higher productivity                           | 13             | 5.2                      |
| 3.      | Horticulture       | Assessment the effect of foliar application of Grade II micronutrients on quality yield in Tomato | 15             | 6.0                      |
| 4.      | Horticulture       | Assess the application of chlormequat chloride 3000 ppm to increase bulb size in Onion            | 13             | 5.20                     |
| 5.      | Veterinary Science | Performance of goats on improvised urea molasses mineral block/Laddu under field conditions       | 15             | 45 Goats                 |
| 6.      | Veterinary Science | Assessment of production performances of goats fed on cotton straw based pelleted completed feed  | 15             | 45 Goats                 |
| 7.      | Veterinary Science | Performance of sex sorted semen under small dairy farming system of cows                          | 14             | 14 Cows                  |
| 8.      | Home Science       | Assessment of heat treatment in increasing the shelf life of pearl millet flour (Bajara))         | 27             | 27                       |
| 9.      | Home Science       | Assess the efficiency of Phule Drumstick Harvester for drudgery reduction                         | 18             | 18                       |

### Front Line Demonstrations (FLDs)

| Sr. No. | Discipline   | FLD Conducted                                                                           | No. of farmers | Area (ha)/No. of Animals |
|---------|--------------|-----------------------------------------------------------------------------------------|----------------|--------------------------|
| 1.      | Agronomy     | Weed management for maximizing soybean yield                                            | 13             | 5.2                      |
| 2.      | Agronomy     | Foliar application of Urea, DAP and MgSO <sub>4</sub> to reduce reddening in Bt Cotton  | 13             | 5.2                      |
| 3.      | Agronomy     | Assessment of weed management practices for cotton production                           | 13             | 5.2                      |
| 4.      | Agronomy     | weed management for maximizing wheat yield                                              | 13             | 5.2                      |
| 5.      | Agronomy     | Assessment of high -density planting system (HDPS) and closer spacing system on cotton. | 13             | 5.2                      |
| 6.      | Horticulture | Demonstration of high yielding and YVMV resistant variety of Okra (Kashi Chaman)        | 50             | 20                       |

| Sr. No. | Discipline         | FLD Conducted                                                                               | No. of farmers | Area (ha)/No. of Animals |
|---------|--------------------|---------------------------------------------------------------------------------------------|----------------|--------------------------|
| 7.      | Horticulture       | Demonstrations of high yielding variety of Brinjal (Hybrid PBL-232)                         | 50             | 20                       |
| 8.      | Veterinary Science | Supplementation of mineral lick blocks to the cows                                          | 15             | 30 Cows                  |
| 9.      | Veterinary Science | Scientific cultivation of Fodder Super Napier (Packchong-I) variety                         | 15             | 30 Cows                  |
| 10.     | Home Science       | Cultivation of Cole crops in Nutrition Garden through IPM Model                             | 18             | 18                       |
| 11.     | Home Science       | Performance of Saat din Ki Saat Kyari for small land holders for nutritional sustainability | 18             | 18                       |

#### Income generation through enterprises established under ARYA

| Sr. No.      | Name of SHG & Address                           | Product                                                                          | Average Income before ARYA (2023) Rs./month | Average Income during ARYA (2024 Rs./month | Increase in Income Rs./month |
|--------------|-------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------|
| 1.           | Swayam Sahayta, Nagpur                          | Pickles, Jam, Jelly, Candy                                                       | 7000                                        | 19000                                      | 12000                        |
| 2.           | Sawitribai Phule, Kalmeshwar                    | Chilli, Turmeric, Spices                                                         | 14000                                       | 29000                                      | 15000                        |
| 3.           | Ekta Mahila, Panjari                            | Millet flour, Urad, Mug, Papad & Wadi                                            | 4000                                        | 9000                                       | 5000                         |
| 4.           | Rakhi Mahila, Kuhi                              | Mix Fruit Jam                                                                    | 6000                                        | 15000                                      | 9000                         |
| 5.           | Jijayu SHG, Jamtha                              | Potato chips                                                                     | Nil                                         | 15000                                      | 15000                        |
| 6.           | Samyak SHG, Beltarodi                           | Snacks from agricultural products Potato chips, Moong Vadi, Papad, Wheat noodles | Nil                                         | 20000                                      | 20000                        |
| 7.           | Tirupati Santra Utpadak Gat, Gondbori, Bhiwapur | Sugar cane Juice (January to June)                                               | 10000                                       | 22000                                      | 12000                        |
| 8.           | Bhiwapur Mirchi Utpadak Gat                     | Chilli powder                                                                    | 25000                                       | 60000                                      | 35000                        |
| 9.           | Taj Shetkari Gat, Wakodi                        | Custard apple pulp (October to January)                                          | Nil                                         | 30000                                      | 30000                        |
| <b>Total</b> |                                                 |                                                                                  |                                             |                                            | <b>1,53,000</b>              |

#### KVK, ICAR-CICR holds PM Kisan Webcasting Programme

Krishi Vigyan Kendra, ICAR-CICR, Nagpur organized PM Kisan programme at its premises on 28/02/2024. This event was hosted via webcasting of the programme from Yavatmal, which was presided over by the Hon'ble Prime Minister. On this occasion, the 16th installment of Kisan Samman Nidhi was released in the form of DBT into the farmers accounts by the Prime Minister. More than 212

farmers, especially those from the Scheduled Caste category, actively participated in this programme, which was sponsored under the Development Action Plan for Scheduled Caste (DAPSC) Scheme. A total of 75 water purifiers were distributed to Schedule Caste (SC) beneficiaries under the DAPSC programme.

Speaking on the event, Dr. Y. G. Prasad, Director, ICAR-CICR, Nagpur, urged farmers to take advantage of the benefits of ICAR institutes and SAUs by adopting the



technologies developed by them. He informed the house about the "Special Project on Cotton" in which highdensity planting system was adopted by beneficiary cotton farmers in 28 districts. The results were encouraging clearly indicating increased cotton production in experimental fields.

Dr. R. K. Singh, Sr. Scientist and Head, KVK welcomed the farmers and introduced the house about the role of KVK and its activities in agriculture, livestock production, and allied sciences to uplift the livelihood of the farming community.

In a technical session, Scientists of CICR, Nagpur, Dr. Dipak Nagrale, Dr. Manikandan spoke on various topics like INM, Disease Management in Cotton, whereas Dr. U.V. Galkate, KVK spoke on Goat Production Technologies for rural areas. Dr. Mayurkumar Meshram, KVK, spoke on the technique of soil collection and its testing. Mrs Sunita Chauhan conducted the visit of farmer participants to Cotton Cropping- based Integrated Farming System (IFS) Model developed at KVK with inclusion of agronomy, horticulture – fruits and vegetables, livestock – cow, goat, poultry, duck, and fisheries component.

Dr. G. T. Behere, Head, Division of Crop Protection, Dr. Jayant Meshram, Principal Scientist & Nodal Officer (DAPST), CICR, Nagpur, were present on the occasion.

#### **Tree Plantation Drive Held at ICAR-CICR Nagpur "Ek Ped Maa Ke Naam" Initiative**

In a significant step toward environmental conservation, the ICAR-CICR, Nagpur, in collaboration with Krishi Vigyan Kendra (KVK), Nagpur, organized a tree plantation drive on 29.08.2024 under the "Ek Ped Maa Ke Naam" initiative. This event witnessed enthusiastic participation from the Director of CICR, the Head of KVK, scientists from CICR, and all staff of KVK, Nagpur.

The drive was inaugurated by Dr. Y.G. Prasad, Director, ICAR-CICR, Nagpur, who emphasized the critical importance of tree plantation in combating climate change and enhancing green cover. "This initiative is not just about planting trees; it's a tribute to our mothers, and through this, we aim to instill the values of nurturing and care, just like a mother does," said the Director.

Dr Ramkrushna G.I., Head, KVK, CICR, Nagpur, also addressed the gathering, highlighting the role of trees in sustaining biodiversity and improving the quality of life.



"Each tree planted today is a step toward a greener and healthier future". It's our responsibility to ensure that the environment we pass on to the next generation is better than what we inherited," he stated.

#### **Golden Jubilee Celebration of Krishi Vigyan Kendras (KVKs) at ICAR-CICR KVK, Nagpur-1 on 08.04.2024**

The ICAR-Krishi Vigyan Kendras (KVKs) celebrate their Golden Jubilee Year in 2024, marking 50 years of dedicated service to agricultural development. The inaugural KVK, established by the ICAR on 21 March 1974 in Puducherry, established the foundation for a transformative journey in agricultural innovation and outreach.



The Golden Jubilee Celebration Torch, symbolizing the illuminating progress achieved by KVKs over the years, arrived at KVK Nagpur from Puducherry, where a Golden Jubilee celebration started on March 21, 2024.

Dr. Y.G. Prasad, Director, ICAR-CICR, Nagpur, highlighted the collaborative efforts in disseminating CICR technology through KVK networks and encouraged farmers to adopt advanced cotton production techniques.

On the occasion, vegetable seed kits and plant protection inputs were distributed to the farmers. The event was organized by Dr. Ramkrushna G.I., Senior Scientist and Head of KVK, CICR, Nagpur, with dedicated contributions from Dr. S.S. Patil, Dr. U.V. Galkate, Mrs. Sunita Chauhan, Dr. Deepa Lal, Dr. S.Y. Wankhede, Dr. Mayur Meshram, Mr. P.S. Gayakwad, Mr. Amol Raghorte, Mr. Sarang Shrirame, and other KVK staff members. Mrs. Sunita Chauhan facilitated coordination, ensuring the smooth conduct of the event, while Dr. Deepa Lal extended heartfelt gratitude through

a vote of thanks, acknowledging the collective efforts that made the Golden Jubilee Celebration of KVKs a resounding success.



#### **Krishak Swarn Samriddhi Week held at Krishi Vigyan Kendra, ICAR- CICR, Nagpur**

The Krishi Vigyan Kendra (KVK), ICAR-Central Institute for Cotton Research (CICR), Nagpur, inaugurated the Krishak Swarn Samriddhi Week on 23rd September 2024. This week-long celebration, from 23rd to 27th September, 2024, aims to promote innovative agricultural practices for sustainable farming and livelihood enhancement, crop diversification and best practices, agri business and value addition, livestock management and allied agriculture and financial and government support for farmers.



The program was chaired by Dr. Y. G. Prasad, Director, CICR, Nagpur. He addressed farmers on the importance of agricultural innovation for achieving self-sufficiency and sustainability. He emphasized the critical role of innovative techniques in improving agricultural productivity and supporting sustainable farming.

Krishak Samriddhi Rath was inaugurated by the hands of Dr. Y. G. Prasad in the presence of the KVK, CICR staff, and farmers.

During the ceremony, agricultural tools and inputs were distributed to the participating farmers by Dr. Y.G. Prasad and other dignitaries further supported efforts to improve farming techniques and resources.

Following the inaugural ceremony, a technical session covering a range of important topics relevant to sustainable farming and agricultural innovation was held.

#### **PM Kisan Samman Nidhi Programme live webcast**

KVK & ICAR-CICR, Nagpur conducted PM Kisan Samman Nidhi Programme live webcasting and also organized Input distribution under TSP: Vegetable seeds Kit, hand sprayer and bio fertilizers were distributed on 18 June 2024 at ICAR-KVK-CICR, Nagpur to beneficiary farmers. Fifty participants attended the programme.



#### **World Soil Day celebrated by the KVK, ICAR, CICR, Nagpur**

On the occasion of World Soil Day (5th December, 2024) a program was organized in different villages and school to raise awareness about soil health and sustainable agriculture. More than 200 farmers from Walani, Gumthala, and Ramtek participated in the programme wherein awareness was created about the soil health and soil health card.



#### **Attracting and retaining rural youth in Agriculture (ARYA)**

Attracting and Retaining Rural Youths in Agriculture (ARYA) project was initiated in 2015-16. KVK-CICR,

Nagpur is one of the centre operating two enterprises for the livelihood of rural youth. 1) Development of disease-free sampling of Nagpur mandarin 2) Fruits and vegetable processing. Project ARYA (Attracting & Retaining Rural Youth in Agriculture) is focuses on creating awareness and capacity building training programmes for youths in rural areas to take up various agricultural, allied and service sector enterprises for sustainable income and gainful employment. During the year 2024, KVK trained 128 rural youths for production of disease-free seedlings of Nagpur mandarin and 110 members of 11 self-help groups for preparation of pickles, citrus juice, Potato chips, preparation of Mixed Fruit Jam, Tomato Ketchup, solar drying of vegetables and preparation of Millet Laddus in different villages of Nagpur (Besa, Beltarodi, Chichbhan, Gondbora, Wakodi, Bhiwapur, Nagalwadi, Katol, Jamtha, Kukrudi panjara and kherdi).



Additionally, KVK provided technical training support to rural youth of the Katol block for multiplication of disease-free Nagpur mandarin seedlings. 13 rural youth beneficiaries developed their nursery on Nagpur mandarin and generating significant income. 13

Knapsack Sprayers are distributed to Citrus Nursery Growers as critical inputs from Paradsinga, kalmeshwar, Mohpa, Ladgoan, Kukadipanjara village of Tahsil Katol and are receiving training and guidance under ARYA.



### Gramin Krishi Mausam Seva

#### Agromet Advisory Services Bulletins

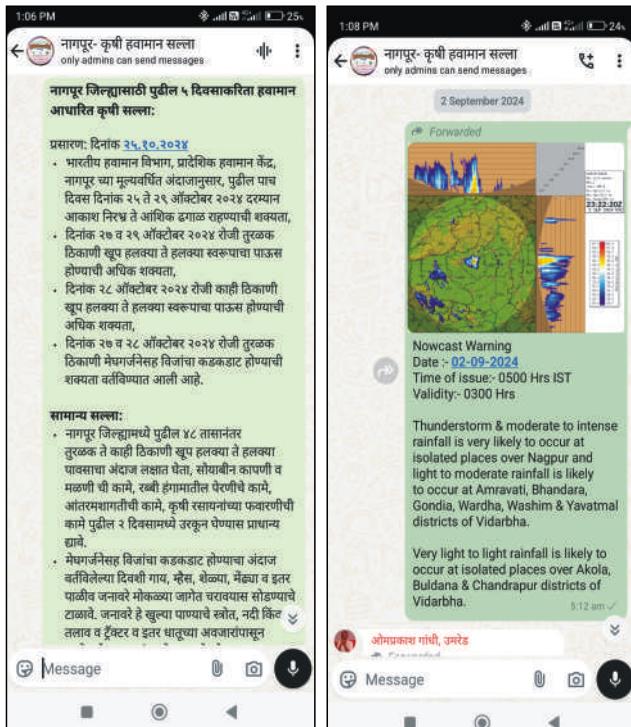
Under the KVK- Gramin Krishi Mausam Sewa, Atmosphere & Climate Research- Modelling Observing Systems & Services scheme, a total of 2912 bi-weekly agrometeorological advisory services bulletins were prepared and disseminated to Nagpur district farmers through various modes from the District Agromet Unit, Nagpur.

#### Impact-based forecasting and advisory services

The impact-based forecasts and advisory were prepared and disseminated by DAMU to the District Collector Office, SAUs, District Disaster Management Authority, District Information Office, State Department of Agriculture, Nagpur, NGOs, FPOs, SHGs, and farmers of the Nagpur district before and after the occurrence of adverse weather events through different modes. A total of 4 I. BF bulletins were prepared and disseminated in 2024.

| District Agromet Unit, Krishi Vigyan Kendra- ICAR- Central Institute for Cotton Research, Nagpur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regional Meteorological Centre, India Meteorological Department, Nagpur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| (Based on the forecast issued on 22/08/2024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| File No. 1BF&AA/08-24/01 Date of Issue: 22/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| Reference: Email received from Dr. A. K. Misra, Scientist - D, Agricultural Meteorology Division, Office of the Climate Research and Services, India Meteorological Department, Shrivilliputhur, Puducherry, dated 22/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| District Level Forecast and warning issued by RMC, Nagpur on dated 22/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| <table border="1"> <thead> <tr> <th colspan="2">1. Forecast and Warning</th> </tr> </thead> <tbody> <tr> <td>22/08/2024</td><td>Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places.</td></tr> <tr> <td>23/08/2024</td><td>Light to moderate rainfall very likely to occur at most places and thunderstorms accompanied with lightning likely to occur at isolated places.</td></tr> <tr> <td>24/08/2024</td><td>Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning and heavy rainfall likely to occur at isolated places.</td></tr> <tr> <td>25/08/2024</td><td>Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places.</td></tr> <tr> <td>26/08/2024</td><td>Light to moderate rainfall very likely to occur at isolated places.</td></tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. Forecast and Warning                         |  | 22/08/2024 | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places. | 23/08/2024               | Light to moderate rainfall very likely to occur at most places and thunderstorms accompanied with lightning likely to occur at isolated places. | 24/08/2024 | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning and heavy rainfall likely to occur at isolated places. | 25/08/2024      | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places. | 26/08/2024 | Light to moderate rainfall very likely to occur at isolated places. |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 1. Forecast and Warning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 22/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places.                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 23/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light to moderate rainfall very likely to occur at most places and thunderstorms accompanied with lightning likely to occur at isolated places.                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 24/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning and heavy rainfall likely to occur at isolated places. |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 25/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light to moderate rainfall very likely to occur at many places and thunderstorms accompanied with lightning likely to occur at isolated places.                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| 26/08/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light to moderate rainfall very likely to occur at isolated places.                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| <table border="1"> <thead> <tr> <th colspan="2">2. IBF &amp; Agromet Advisories for Nagpur district</th> </tr> </thead> <tbody> <tr> <td>District</td><td>Crop</td><td>Stage/Term of operations</td><td>Likely impact on crop</td></tr> <tr> <td>Nagpur</td><td>All</td><td>Farm operations</td><td>Water stagnation, crop damage, incidence of diseases etc.</td></tr> <tr> <td></td><td></td><td></td><td> <ul style="list-style-type: none"> <li>Considering the fairly widespread incidence of rainfall activity over the district during the next 5 days, it is advised to postpone the application of agrochemicals, intercropping operations, and fertilizer application in standing crops.</li> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul> </td></tr> <tr> <td>Cotton</td><td>Vegetative stage</td><td>Rain stagnation, incidence of diseases etc.</td><td> <ul style="list-style-type: none"> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul> </td></tr> </tbody> </table> |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. IBF & Agromet Advisories for Nagpur district |  | District   | Crop                                                                                                                                            | Stage/Term of operations | Likely impact on crop                                                                                                                           | Nagpur     | All                                                                                                                                                                | Farm operations | Water stagnation, crop damage, incidence of diseases etc.                                                                                       |            |                                                                     |  | <ul style="list-style-type: none"> <li>Considering the fairly widespread incidence of rainfall activity over the district during the next 5 days, it is advised to postpone the application of agrochemicals, intercropping operations, and fertilizer application in standing crops.</li> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul> | Cotton | Vegetative stage | Rain stagnation, incidence of diseases etc. | <ul style="list-style-type: none"> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul> |
| 2. IBF & Agromet Advisories for Nagpur district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Crop                                                                                                                                                               | Stage/Term of operations                    | Likely impact on crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| Nagpur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All                                                                                                                                                                | Farm operations                             | Water stagnation, crop damage, incidence of diseases etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    |                                             | <ul style="list-style-type: none"> <li>Considering the fairly widespread incidence of rainfall activity over the district during the next 5 days, it is advised to postpone the application of agrochemicals, intercropping operations, and fertilizer application in standing crops.</li> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul> |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |
| Cotton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vegetative stage                                                                                                                                                   | Rain stagnation, incidence of diseases etc. | <ul style="list-style-type: none"> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>It is advised that excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>After occurrence of rainfall events, farmers are advised for drenching.</li> </ul>                                                                                                                                                                                                                                                         |                                                 |  |            |                                                                                                                                                 |                          |                                                                                                                                                 |            |                                                                                                                                                                    |                 |                                                                                                                                                 |            |                                                                     |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |                                             |                                                                                                                                                                                                                                                                                                                                   |

|          |                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soybean  | Pod development | Rain water stagnation, crop damage, incidence of diseases etc.   | of Cationexchange 50 % Wt @ 1.2 gram per litre of water to protect the crop from wet rot and root rot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                 |                                                                  | <ul style="list-style-type: none"> <li>Also, the application of Trichoderma 100 gms @ 1 kg m<sup>-2</sup> with 150 gms of decomposed FYM @ 1 acre area to protect the crop from seedling diseases is suggested.</li> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>Drain out excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>Suspend all farm operations viz., agrochemicals spraying, fertilizer application, intercropping operations etc. for next 3-4 days on account of forecasted fairly widespread rainfall and heavy rainfall at isolated places along with thunderstorms and lightning.</li> </ul> |
| Amaranth | Vegetative      | Rain water stagnation, crop damage, incidence of diseases etc.   | <ul style="list-style-type: none"> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>Drain out excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>Suspend all farm operations viz., agrochemicals spraying, fertilizer application, intercropping operations etc. for next 3-4 days on account of forecasted fairly widespread rainfall and heavy rainfall at isolated places along with thunderstorms and lightning.</li> </ul>                                                                                                                                                                                   |
|          |                 |                                                                  | <ul style="list-style-type: none"> <li>It is advised to open the field channels to avoid surface ponding.</li> <li>Drain out excess rain water stagnated in the crop wherever necessary to avoid further disease occurrence.</li> <li>Suspend all farm operations viz., agrochemicals spraying, fertilizer application, intercropping operations etc. for next 3-4 days on account of forecasted fairly widespread rainfall and heavy rainfall at isolated places along with thunderstorms and lightning.</li> </ul>                                                                                                                                                                                   |
| Paddy    | Tillering       | Farm and farm labour may suffer due to heavy rain and lightning. | <ul style="list-style-type: none"> <li>Suspend all farm operations viz., agrochemicals spraying, fertilizer application, intercropping operations etc. for next 3-4 days on account of forecasted fairly widespread rainfall and heavy rainfall at isolated places along with thunderstorms and lightning.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                 |                                                                  | <ul style="list-style-type: none"> <li>It is advised to support the fruit perchets with the help of bamboo to avoid the fruit dropping.</li> <li>Drain out excess rain water</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


|                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vegetables              | Fruit development and maturity | <ul style="list-style-type: none"> <li>Fruit dropping</li> <li>Deterioration in fruit quality.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diagnosed in the crop whenever necessary to avoid further disease occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li>Carry out the harvesting of market ready fruit to avoid fruit dropping and deterioration in fruit quality during early morning hours to prevent the impact of lightning.</li> <li>People should not be exposed to lightning in open areas like fields and open fields.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Farmers and farm labour | Lightning strikes              | <ul style="list-style-type: none"> <li>Farmers, farm labourers should not walk to cross the road if water is flowing across the road and also take care that these farm animals do not pass through the flowing water.</li> <li>Farmers engaged in paddy transplanting work, they must be aware that no any thunderstorms and lightning activity near by their work place. Farmers are advised to monitor the lightning activity through Distant-lightning Alert app.</li> <li>House should be safe in farms.</li> <li>Farmer are advised that, they must not take the shelter under during the extreme weather like, thunderstorms, lightning, heavy rainfall etc.</li> <li>Considering the possibility of thunderstorms and lightning, maximum distance between two persons should be maintained while working in the field.</li> <li>If near thunder while working in the field immediately take safe shelter.</li> <li>Always good to take shelter near tree and under tree.</li> <li>If you are working in the field, take shelter immediately near the field boundary or under a safe place in the field. keep dry wood, plastic, goggles, dry match under the feet. Sit with both feet together and keep hands near the knees. Make sure that no part of your body touches the ground around your feet. Individuals working in ponds, such places</li> </ul> | <ul style="list-style-type: none"> <li>Farmers, farm labourers should not walk to cross the road if water is flowing across the road and also take care that these farm animals do not pass through the flowing water.</li> <li>Farmers engaged in paddy transplanting work, they must be aware that no any thunderstorms and lightning activity near by their work place. Farmers are advised to monitor the lightning activity through Distant-lightning Alert app.</li> <li>House should be safe in farms.</li> <li>Farmer are advised that, they must not take the shelter under during the extreme weather like, thunderstorms, lightning, heavy rainfall etc.</li> <li>Considering the possibility of thunderstorms and lightning, maximum distance between two persons should be maintained while working in the field.</li> <li>If near thunder while working in the field immediately take safe shelter.</li> <li>Always good to take shelter near tree and under tree.</li> <li>If you are working in the field, take shelter immediately near the field boundary or under a safe place in the field. keep dry wood, plastic, goggles, dry match under the feet. Sit with both feet together and keep hands near the knees. Make sure that no part of your body touches the ground around your feet. Individuals working in ponds, such places</li> </ul> |
|                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li>Farmers, farm labourers should not walk to cross the road if water is flowing across the road and also take care that these farm animals do not pass through the flowing water.</li> <li>Farmers engaged in paddy transplanting work, they must be aware that no any thunderstorms and lightning activity near by their work place. Farmers are advised to monitor the lightning activity through Distant-lightning Alert app.</li> <li>House should be safe in farms.</li> <li>Farmer are advised that, they must not take the shelter under during the extreme weather like, thunderstorms, lightning, heavy rainfall etc.</li> <li>Considering the possibility of thunderstorms and lightning, maximum distance between two persons should be maintained while working in the field.</li> <li>If near thunder while working in the field immediately take safe shelter.</li> <li>Always good to take shelter near tree and under tree.</li> <li>If you are working in the field, take shelter immediately near the field boundary or under a safe place in the field. keep dry wood, plastic, goggles, dry match under the feet. Sit with both feet together and keep hands near the knees. Make sure that no part of your body touches the ground around your feet. Individuals working in ponds, such places</li> </ul> |

#### Impact-based forecast and advisory bulletins



## Nowcast warning

The Nowcast warning and forecast are received from time to time by Regional Meteorological Centre, Nagpur and are disseminated to farmers on priority on their registered mobile number through different social media platforms. The Nowcast warning includes warnings about heavy rainfall, hail, thunderstorms, lightning, and gusty winds valid for next 3 hours from the Nowcast forecast issued.



## Farmers Awareness Programme on agrometeorological advisory services in Nagpur

A total of 8 farmer awareness programmes were conducted in Nagpur to promote the use and application of agrometeorological advisory services. These programs held at the KVK campus and various villages. Such awareness programmes play a crucial role in educating farmers about the benefits of utilizing such services for effective farm management, especially in mitigating the risks posed by adverse weather conditions. The use of mobile applications such as Meghdoot, Damini, Mausam and Public Observatories can significantly empower farmers by providing timely weather updates and forecasts. By leveraging these applications, farmers can make informed decisions regarding crop cultivation, irrigation scheduling, pest management, and other agricultural practices, thereby optimizing yields and minimizing losses.

Overall, initiatives like these contribute to enhancing agricultural systems' resilience and sustainability, ultimately improving farmers' livelihoods and strengthening food security in the region.



Exposure visits of students from G. H. Raisoni College of Engineering, Nagpur to Agromet Observatory of ICAR-CICR, Nagpur

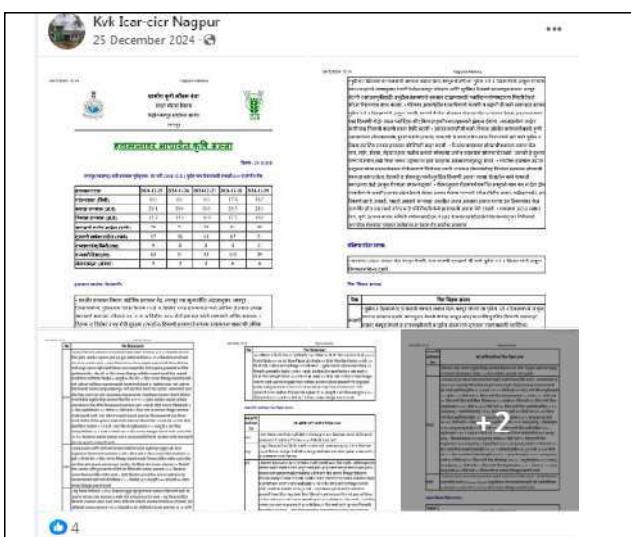


Exposure visits of students from Yashwantrao Chavhan College of Engineering, Nagpur to Agromet Observatory of ICAR-CICR, Nagpur

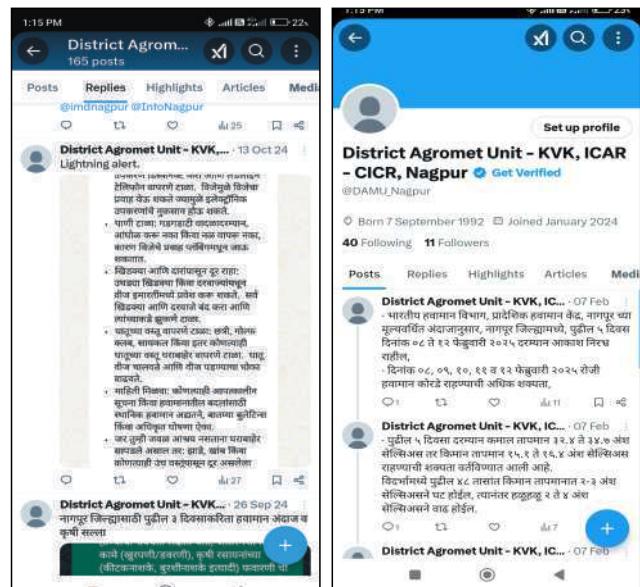


Farmers Awareness programme on Weather Information at Farmers' Doorsteps through Mobile on 08.09.2024 at R.R. Lahoti Science College, Morshi, District Amravati Organized by Late Vasantrao Naik Sheti Swawalamban Mission, Maharashtra, in collaboration with Shri R. R. Lahoti College of Science, Morshi, and Yashwantrao Chavan Open University, Nashik

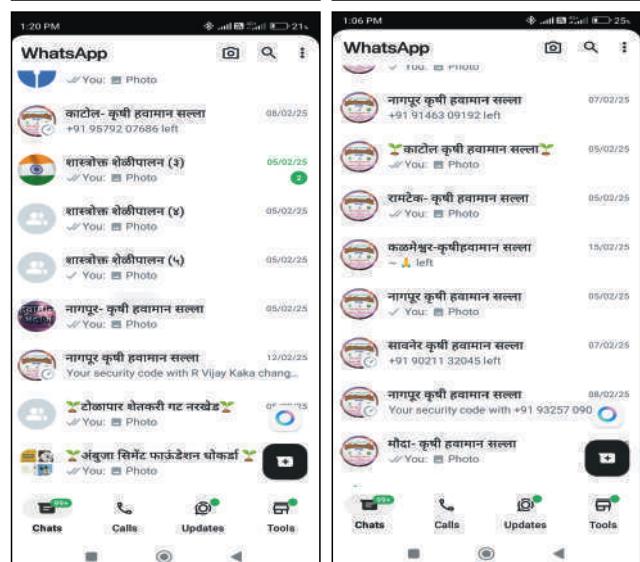



Lightning Awareness Programme at Ghorpad, Tehsil-Kamthe, Nagpur on 24.09.2024 under Krishak Samruddhi Week.

### Dissemination of Agromet Advisory Services in Nagpur


The dissemination of the Agromet Advisory Service (GKMS) was effectively carried out through various social media platforms and communication channels, reaching a wide number of farmers. Among the most widely used platforms, WhatsApp was the most prominent, with a total of 82,756 farmers receiving advisories through 342 WhatsApp groups. In addition, a WhatsApp community group of 2,545 farmers also played a key role in sharing important agricultural information.

Another significant platform for the advisory service was the mKisan portal, which reached 169,607 farmers, followed by the Kisan Sarathi portal, with 61,393 registered farmers. The Telegram channels (3 in total) served 1,899 farmers, and the Facebook page, although reaching fewer farmers, still contributed with a total of 4,978 farmers.


In total, the combined efforts across these platforms reached 3,23,178 farmers, demonstrating the extensive outreach and impact of the Agromet Advisory Service under the GKMS program.



Dissemination Agromet Advisory Services through Facebook



Dissemination of weather forecast through X (Formerly Twitter)



Dissemination of weather forecast and advisory services through WhatsApp.



The following social media platform were created and used for dissemination of Agromet Advisory service under GKMS ACROSS-

| Sr. No.      | Social media platform         | No. of farmers    |
|--------------|-------------------------------|-------------------|
| 1.           | Whats app (342 group)         | 82756             |
| 2.           | Whats app community group (1) | 2545              |
| 3.           | mKisan portal (1)             | 169607            |
| 4.           | Kisan Sarathi portal (1)      | 61393             |
| 5.           | Telegram (3)                  | 1899              |
| 6.           | Facebook (1)                  | 4978              |
| <b>Total</b> |                               | <b>3, 23, 178</b> |

### Integrated Farming System (IFS) for Doubling Farmer's Income

Krishi Vigyan Kendra, Nagpur, developed an Integrated Cotton based IFS module in 2021, covering a 1 hectare area. This IFS has three components viz., crop component (Cotton + Soybean), a horticulture component (vegetable & fruits) and animal components (Goat, cow, fish), and allied enterprise (mushroom cultivation).

Responsibility for the establishment and strengthening of Horticulture component was given to Ms. Sunita Chauhan, SMS (Home Science), who brought nutritional security and enhanced income of the family at large.



- In the horticulture component, all seasonal vegetables of Kharif and Rabi crops are grown organically.
- Organic waste is also converted to manure using a waste decomposer.
- 179 Amrapali mango plants were replanted in March 2021 using the high-density method and 64 Guava of L-49 variety are planted in June 2021 on mulch.
- Nearly 996 Dignitaries, tribal and schedule caste farmers, Farm Women, RAWE students, and SHG visited the IFS module. Skill training on Nursery raising, Seedling transplanting on mulch, and operation of drudgery reduction tools were provided during the reporting period for women empowerment.
- A model of Cole Crops with Bio Control was demonstrated. Excellent quality Cabbage, Cauliflower, Broccoli, and red cabbage were cultivated during the Rabi Season. All produce was sold to the ICAR-CICR staff on a first-come-first-serve

basis.

- Onions and green leafy vegetables were also cultivated during the Rabi Season. Training on value addition of turmeric and chili was given to Farm Womens, SHGs for enhancing income of rural community.
- Demonstration and use of Jivamrutham, Panchgavya, Dashparni, fermented fruit Juice to PFM, PFF, EFF.
- Introduction of cultivation of watermelon in Zaid season.
- Demonstration of Oyster Mushroom in an Outdoor, Mobile Unit for additional income generation.
- A demonstration of a Type C variety Dragon Fruit plantation was successfully conducted in IFS for tribal farmers of Hingna Tahsil. The initiative was aimed to introduce modern cultivation techniques, improve productivity, and promote sustainable farming practices among the tribal community. The farmers were guided on proper land preparation, planting methods, irrigation management, and post-harvest practices to ensure better yield and profitability. This effort is expected to enhance livelihood opportunities and encourage the adoption of high-value horticultural crops in the region through IFS.



A low-cost small model shade for a family Of 2-4 person is also established. In one hectare area crop like cotton, soybean, gram, seasonal and exotic vegetables, fruits, and flowers, were grown in kharif and rabi season and other components such as animal, poultry, duck, goat, cow, fish were demonstrated for enhancing the income of marginal farmers.

Integrated farming system module units were visited by

the State Agriculture Departments and officials of Nagpur Universities, Wardha, Akola, Gadchiroli, Durg, Narmadapuram (MP), and 950 students from 3rd to 9th standard of PM Kendriya Vidyalaya, Nagpur from January to December 2024. In all 26 visits in IFS were carried out. They observed the organic cultivation practices of vegetables, fruits, and flowers grown under IFS, composting technique & animal components of IFS, viz. Ducks, Poultry, Fish, and Goats.



### Natural Farming

Krishi Vigyan Kendra conducted workshop cum training on Natural farming under the Home Science discipline for farmers, farm women, students, and Farmers Producing Organization (FPO) on 20 August 2024. In his



inaugural address, Dr. Ramkrushna Senior Scientist and Head KVK, ICAR-CICR, Nagpur emphasized the need for popularization efforts for "Natural Farming" and stressed the role to be played by the FPOs. In the technical session, demonstration on preparation of biological inputs, viz. Jivamrut, Panchagavya, and Saptdhanankur, and preparation of Bio-pesticides, viz. Dashparni, LAMIT Ark, and Botanicals for use in Natural

Farming by Smt. Sunita Chauhan, SMS, Home Science, KVK, ICAR-CICR, Nagpur. 132 farmers, 184 students, FPO Nagpur, Umred, Bhiwapur, and Hingna were benefited during 2024.

### Swachhta Bharat Diwas and Decade of Swachh Bharat Mission:

ICAR-Central Institute for Cotton Research (CICR), Nagpur, celebrated Swachhta Bharat Diwas and a decade of Swachh Bharat Mission at Community Hall, Krishi Kunj, Bajaj Nagar, Nagpur on 2nd Oct 2024. Twenty sanitation workers who take care of the surroundings of quarters (Type 1 to Type 5), play grounds, gardens, roads, and Guest house participated in the programme. During the glorious event celebration, a felicitation was given to all sanitation workers, who also distributed lunch boxes, water bottles, and sanitation kits. The best sanitation workers and security guards were awarded for their contributions during the covid and fire accident at Krishi Kunj. Earlier Swachh Food Streets Initiative at Punarvasan Weekly Bazaar, Khapri was inspected for sanitation being followed by different fast-food stalls, Chaupati stalls, Chat Centre, and Food Junction. During the programme, awareness of the importance of Swachh food and cleanliness was taught to the participants. In another activity, Swachhata Sabha at Village level a special Gram Sabha conducted at Panjari village through newly formed women self-help group (SHG) for minimum plastic use.

### Meetings

#### 29th Scientific Advisory Committee Meeting of KVK, ICAR-CICR, Nagpur,

The meeting was held on 21.08.2024 at ICAR-CICR and chaired by Dr. Y.G. Prasad, who reviewed the progress and ongoing activities of the Krishi Vigyan Kendra (KVK), Central Institute for Cotton Research (CICR), with SAC members.



Dr. Prasad highlighted the need to focus on the upscaling of closer spacing and High-Density Planting System (HDPS) for cotton cultivation in various tehsils of the district, in collaboration with the state agriculture department. He also stressed the importance of promoting climate-resilient agricultural technologies in partnership with relevant line departments and a district-specific action plan for cotton production.

Dr. Ramkrushna G.I., Senior Scientist and Head of KVK, CICR, Nagpur, presented the action taken report for the previous year and the action plan for the current year. His presentation included plan for on-farm trials, frontline

demonstrations, training programs for women, rural youth, extension functionaries, and farmers as well as the progress of agro-meteorological advisory services in the district.

#### Meetings/ Workshop/Conference/Training attended

| Name of the officials        | Name of event                                                                                                                                                                          | Location/Venue           | Date                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------|
| Dr. U. V. Galkate            | ATMA Meeting & Pre-kharif Review Meeting                                                                                                                                               | Collector Office, Nagpur | 25.04.2024                                             |
| Dr. U. V. Galkate            | Online Meeting Review of ICAR Institutes                                                                                                                                               | ICAR Head Quarter        | 20.06.2024                                             |
| Dr. M. R. Meshram            | Action Plan Workshop of KVks                                                                                                                                                           | Dr. PDKV, Akola          | 10-11.02.2025                                          |
| Dr. M. R. Meshram            | Online Training on safe chemical uses for crop management                                                                                                                              | NIPHM, Hyderabad         | 14.10.2024                                             |
| Dr. M. R. Meshram            | AGRITECH EXPO 2024                                                                                                                                                                     | Dr. PDKV, Akola          | 27-29.12.2024                                          |
| Dr. Sachin Wankhede          | Training programme on Advanced data analysis using 'R' organized by Centre for e-learning Kerala Agricultural University and Dept. of Agricultural Statistics, Vellanikkara, Thrissur. | Online                   | 11 <sup>th</sup> to 15 <sup>th</sup> , November, 2024. |
| Dr. Sachin Yadavrao Wankhede | one day Workshop on "Training Need Analysis" to finalized the time tables of annual trainings organized by Regional Agricultural Extension Management Training Institute, Nagpur       | RAMETI, Nagpur           | 04.12.2024.                                            |

#### Publication: Research Paper/Technical Bulletins/ Books

##### Technical Bulletins

- Wankhede, S.Y., Ramkrushna G.I., Galkate, U.V., Lal Deepa, Prasad, Y.G. Climate Normal and Rainfall Probabilities for Climate Resilient Agriculture in Nagpur. CICR Technical Bulletin 2024- Pages-59.

##### Book

- Wankhede, S.Y., Ramkrushna G.I., Galkate, U.V., Lal Deepa, Prasad, Y.G. Analysis of Historical Rainfall and Future Trends for Climate Resilient Agriculture in Nagpur. CICR, Book 2024- Pages- 112. ISBN Number: 978-93-93826-58-9.

##### Research Paper

- S. Ghosal, T.P. Rathour, P. Datta, Neladri S Sarkar, Deepa Lal, Jitendra Gurjar, R. M. Reja, Mouli Paul and Ritik Chawla.; Influence Of Nano Urea On The Fruit Qualitative Features Of Litchi Cv. Bombai Grown In New Alluvial Zon e Of West Bengal India. Plant Archives Vol. 24, Special Issue (GABELS), pp.149-153(2024).
- Soustav Datta, Niladri Dutta, Susmita Dey, Chinmoy Mandal, Ritwika Sen, Sarthak Bhattacharya, Pallab Datta, T.P. Rathour, Deepa Lal and Lipsa Prit Bhushan. Response of Time and Severity of Pruning on Vegetative and Reproductive Characteristics of Ber cv. BAU Kul. Journal of Advances in Biology & Biotechnology Volume 27, Issue 8, Page 758-766, (2024).

- T. P. Rathor, R.P.Singh, Dev A Raju, Nilay Kumar And Deepa Lal. 2024 Leafy and minor vegetable: An Inclusive Study, SR Edu Publication, ISBN :97892941-65-8,2024
- Ankit Mohanty, Surekha S., Afsanabanu Manik and Deepa Lal, 2024. Crop physiology: A collaborative Insights Vol -1, (2024), Stella international Publication, ISBN No. 978-81-9203-7-1

##### Published popular articles:

- U. V. Galkate, S.Y. Wankhede. Unhalyat Pashudhanachi Ghya Kalji (Care & management of livestock in summer). Krushakonnati. 17.05.2024.
- U. V. Galkate, S.Y. Wankhede. Kami Kharchatil Shelyanche Vyavasthapan (Low cost feed management in goats). Krushakonnati. 16.09.2024.
- B. Pavan Kumar Naik, Anjana Suresh, Deepa Lal, Sagar Chaudhary, Gayatri Sinha, T.P. Rathour. Plasticulture. Agri Articles (e-Magazine for Agricultural Articles). Volume: 04, Issue: 05 (SEP-OCT, 2024).
- R. M. Reja, Chethan B.L., Anjana Suresh, Deepa Lal, Mouli Pau, Sagar Chaudhary. Hi-tech Nursery. New Era Agriculture Magazine, E-ISSN: 2583-5173 Volume-3, Issue-4, September, 2024.
- Tejavath Ram Raju, Subrat Kumar Senapati, Arpan Sain, Deepa Lal, Sagar Chaudhary, Snigdha Bhowmik. Precision Farming. New Era Agriculture Magazine, E-ISSN: 2583-5173 Volume-3, Issue-4, September, 2024.



- vi. T. P. Rathour, Chethan B. L., Amirthavarshini E. S., Nagaraju Vankadavath, Deepa Lal, Niteen. Mahua: An Economic Multifunctional Tree of India. Agriculture and Food: E Newsletter, Volume 06 - Issue 05 - May, pp 405-407 (2024).
- vii. T.P. Rathour, Gayatri Sinha, Chelsea G. N, Joseph Lalchhuansanga, Anubhav Pathania, Deepa Lal. Application of Drone Technology in Agriculture. New Era Agriculture Magazine, E-ISSN: 2583-5173 Volume-2, Issue-12, May, 2024.
- viii. P. Pratyusha, T.P. Rathour, Deepa Lal, V.K. Maheshwari, Gayatri Sinha, D.D Wavre. Dichogamy in Fruit Crops. New Era Agriculture Magazine, E-ISSN: 2583-5173 Volume-2, Issue-12, May, 2024.
- ix. Deepa Lal, Jayashree Khobragade, Rakesh Kumar Singh. Manjula Self Help Group's Triumph: Vegetable Momos – A Profitable Business. Agri Tech Today, Volume 1, Issue 11, pp 57-59 (2024).
- x. Deepa Lal, Jayashree Khobragade, Rakesh Singh. From Struggles to Success: The Inspiring Journey of Mr. Pratik Gulande's Disease-Free Citrus Nursery. Agri Tech Today, Volume 1, Issue 11, pp 14-15 (2024).

#### Book chapter

- i. Sea Buckthorn, Shivam, Dr. Deepa Lal, Dr. Ajay Kumar Karna and Dr. Gopa Mishra, in Minor Fruit Crops An inclusive Study. Walnutpublication.com, (2024), pp455-459
- ii. Ramontchi Fruit (2024) Dr. Deepa Lal and Vidhya Sagar Mali in Minor Fruit Crops An inclusive Study. Walnutpublication.com pp 435-436
- iii. Integrated Pest Management in Fruit Crops (2024), Deepa Lal and Rakesh Kumar Singh, Fruit Science Chronicles: A Collaborative Insight Vol. -1 Stella international Publication, pp 314-328
- iv. Sorrel, Deepa Lal and Hima Bindu SR edu publication, ISBN :97892941-65-8,(2024)

#### Guest Lectures:

- i. Dr. U. V. Galkate, SMS, Veterinary Sciences, had delivered lecture on "Climate resilient livestock production methods on 27.09.2024 during the training organized for Ambuja Foundation staff at KVK, ICAR-CICR, Nagpur
- ii. Dr. U. V. Galkate, SMS, Veterinary Sciences, had delivered lecture on Goat farming: As a promising entrepreneurship for small farmers and rural youth in a SCSP training programme organized by LDO (Extension) Panchayat Samiti, Nagpur at Tembhari, Tehsil- & Dist. Nagpur on 18.10.2024.
- iii. Dr. U. V. Galkate, SMS, Veterinary Sciences, had delivered lecture on Livestock & poultry business for FPO's in training programme organized in collaboration with Savitribai Phule Mahila Ekta Samaj Mandal, Sambhaji nagar at KVK, ICAR-CICR, Nagpur on 23.10.2024
- iv. Dr. Sachin Yadavrao Wankhede, SMS, Agro-

meteorology had delivered a lecture as a resource person in 5 day "Trainers Training Programme on Integrated Pest & Disease Management Programme organized by Regional Agricultural Extension Management Training Institute, Nagpur during 03.06.2024 to 07.06.2024 on topic entitled "Integrated Nutrient Management in Paddy crop" for official staff of Department of Agriculture, Government of Maharashtra on 06.06.2024.

- v. Dr. Sachin Yadavrao Wankhede, SMS, Agrometeorology had delivered a lecture as a resource person in training organized by Regional Agricultural Extension Management Training Institute, Nagpur on topic entitled "Integrated Weed Management in Wheat and Chickpea crop" for official staff of Department of Agriculture, Government of Maharashtra on 06.09.2024.
- vi. Dr. Sachin Yadavrao Wankhede, SMS, Agrometeorology had delivered his lecture as resource person "Weather Information for Crop Production" at Regional Agricultural Extension Management Training Institute (RAMETI), Nagpur to the 40 participants of Diploma in Agricultural Extension Services for Input Dealers (DAESI) (Batch No-2) on dated 06.04.2024.
- vii. Dr. Sachin Yadavrao Wankhede, SMS, Agrometeorology had delivered his lecture as resource person "Crop Production Technology of Gram and Wheat" at Regional Agricultural Extension Management Training Institute (RAMETI), Nagpur to the 40 participants of Diploma in Agricultural Extension Services for Input Dealers (DAESI) (Batch No-6) on dated 26.10.2024.
- viii. Dr. Sachin Yadavrao Wankhede, SMS, Agrometeorology had delivered his lecture as resource person "Crop Production Technology of Sugarcane" at Regional Agricultural Extension Management Training Institute (RAMETI), Nagpur to the 40 participants of Diploma in Agricultural Extension Services for Input Dealers (DAESI) (Batch No-6) on dated 09.11.2024.
- ix. Dr. Sachin Yadavrao Wankhede, SMS, Agrometeorology had delivered his lecture as resource person "Crop Production Technology of Paddy" at Regional Agricultural Extension Management Training Institute (RAMETI), Nagpur to the 40 participants of Diploma in Agricultural Extension Services for Input Dealers (DAESI) (Batch No-6) on dated 22.06.2024.
- x. Smt. Sunita Chauhan, SMS, Home-Science had delivered lecture on Climate resilient technology for improving the vegetable and fruit production methods on 27.09.2024 at training programme organized for Ambuja Foundation staffs at KVK, ICAR-CICR, Nagpur.
- xi. Smt. Sunita Chauhan, SMS, Home-Science had delivered his lecture on Soybean processing and its



value-added products for the Extension Functionaries of State Agriculture Department at Kuhu on dated 22.03.2024.

xii. Smt. Sunita Chauhan, SMS, Home-Science had delivered his lecture on value added products for income generation for the Extension Functionaries of State Agriculture Department and farmers of Kamptee on dated 27.03.2024.

#### Awards received

- i. Dr. Deepa Lal has received Outstanding Technology Transfer Award 2021-2022, Indian Society of Horticulture Research & Development (ISHRD) Uttarakhand, India, during Progressive Horticulture Conclave (PHC 2024) held Navasari Agricultural University (Gujarat), during 18-20 January 2024.
- ii. Dr. Deepa Lal has received for outstanding contribution in the field of Horticulture in Young Horticulturist Award 2024, 2nd International Agriculture Conference held at Hansraj College, University of Delhi, India, during 3-5 November, 2024.
- iii. Smt. Sunita Chauhan, SMS (Home Science), KVK, ICAR-CICR, Nagpur has received Best Presentation Award during the Annual Zonal Workshop held at JAU, Junagadh (Gujarat) by the auspicious hand of honourable DDG.U.S. Gautam, ICAR, New Delhi & in presence of Honorable Dr. Kokate former DDG, ICAR and Dr. S.K Roy Director, ATARI, Pune during 16.12.2024.
- iv. Dr. Sachin Wankhede, SMS, Agrometeorology has received the Certificate of Appreciation from Department of Agriculture, Government of Maharashtra for significant contribution in agrometeorological advisory services and awareness on lightning and promotion and publicity of mobile apps such as Meghdoot, Mausam, Sachet and Kisan Sarathi web portal at State Level Agricultural Technology Exhibition – 2024 organized on the occasion of 68th Dhammachakra, Pravartan Day from 11th October 2024 to 13th October 2024 by Department of Agriculture, Agriculture Technology Management Agency and Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola
- v. Dr. Ulhas Galkate, Subject Matter Specialist (Veterinary Science), KVK, ICAR-CICR, Nagpur was honoured with the Swargiya Dr. P. N. Sagdev Smriti Award for the year 2023-24. The award recognizing him as the Best Extension Research Officer was presented by the Hon'ble Vice-Chancellor of MAFSU, Nagpur at a distinguished ceremony organized by the Senior Veterinary Forum at Nagpur Veterinary College on 15th February 2025

- Dr. U. V. Galkate participated as expert veterinarian in Phone in Programme broadcasted by All India Radio on dated 06.11.2024 & 20.11.2024 at 7.30 PM.
- Dr. M. R. Meshram, I/c SMS (Agronomy), KVK, ICAR-CICR, Nagpur delivered a Radio talk on "Supikatesathi Jaminichi Aarogya Tapasani ani Khat Vyavsthan" which was broadcasted in All India Radio on dated 22.06.2024.
- Dr. M. R. Meshram, I/c SMS (Agronomy), KVK, ICAR-CICR, Nagpur delivered a Radio talk on "Gahu ani Harbhara Lagwad Tantrayyan" which was broadcasted in All India Radio on dated 13.10.2024.
- Dr. Sachin Wankhede, SMS, Agrometeorology had delivered radio talk on Aapatkalin Pik Vyasthapan (Contingency Crop Planning) on 19th, August, 2024 which was broadcasted in Majh Gaon Majh Waver programme of All India Radio on 24th August, 2024.
- Dr. Sachin Wankhede, SMS, Agrometeorology had delivered radio talk on Hawaman Shastra ani Aapli Sheti (Meteorology & Our Agriculture) on 04th, April, 2024 which was broadcasted in Majh Aawar Majh Shiwar programme of All India Radio on 09th, April, 2024.
- Dr. Sachin Wankhede, SMS, Agrometeorology had delivered radio talk on Rabi Pikanchya Perniche Pawasawar Aadharit Vyawasthapan (Management of Rabi Crop Sowing based on Rainfall) on 14th, October, 2024 which was broadcasted in Majh Gaon Majh Wavar programme of All India Radio on 20th, October, 2024.
- Smt. Sunita Chauhan delivered Radio talk "Shashwat Bhajipalasathi Sendriya Nivishttha" (Organic input for sustainable vegetable production) broadcasted by All India Radio on dated 14.04.2024 at 7.30 PM.
- Smt. Sunita Chauhan delivered Radio talk "Importance and value-added product from barnyard millet" broadcasted by All India Radio on dated 11.06.2024 at 7.30 PM.



## 10.1: Publications

### 10.1.1 Research papers (NAAS Score > 6)

1. Surabhi Rode, Harry Kaur, Monica Sharma, Shah Vivek, Shiv Shakti Singh, Mrugendra Gubyad, Dilip Kumar Ghosh, Debabrata Sircar, Pravindra Kumar, Partha Roy and Ashwani Kumar Sharma (2024). Characterization of type 1 lipid transfer protein from *Citrus sinensis*: unravelling its potential as an antimicrobial and insecticidal agent. *International Journal of Biological Macromolecules* 265(1):130811. (NAAS Score: 14.2)
2. Sain, S.K., Paul, D., Kumar, P., Kumar, A., Mohan, M., Monga, D., Prakash, A.H. and Prasad, Y.G. (2024). Cotton leaf curl disease (CLCuD) prediction modelling in upland cotton under different ecological conditions using machine learning tools. *Ecological Informatics* doi.org/10.1016/j.ecoinf.2024.102648. (NAAS Score: 11.1)
3. Sain, S.K., Kranthi, S., Kranthi, K.R., Monga, D., Paul, D. and Prasad, Y.G. (2024). Diversity study of *Beauveria bassiana* species for finding the most virulent strain to manage *Bemisia tabaci* in cotton. *Applied Microbiology and Biotechnology* doi.org/10.1007/s00253-024-13188-1. (NAAS Score: 11)
4. Kaur Harry, Rode Surabhi, Lonare Sapna, Demiwal Pratibha, Narasimhappa Pavithra, Arun Etisha, Kumar Rakesh, Das Joy, Ramamurthy Praveen C, Sircar Debabrata, Sharma Ashwani Kumar (2024). Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from *Helicoverpa armigera*. *Pesticide Biochemistry and Physiology* https://doi.org/10.1016/j.pestbp.2024.105844. (NAAS Score: 10.7)
5. D. Dhivyapriya, S. Ramchander, K Baghylakshmi, G. Subashini, M. Raveendran & P. Jeyaprakash. (2024). Marker-assisted pseudo-backcrossing for developing climate-resilient rice. *Scientific Reports* 14, 30219. (NAAS Score: 10.6)
6. Kaur Harry, Singh Simranjeet, Rode Surabhi, Chaudhary Pankaj Kumar, Khan Nadeem A., Ramamurthy Praveen C., Gupta Deena Nath, Kumar Rakesh, Das Joy, & Sharma Ashwani Kumar (2024). Fabrication and characterization of polyvinyl alcohol-chitosan composite nanofibers for carboxylesterase immobilization to enhance the stability of the enzyme. *Scientific Reports* https://doi.org/10.1038/s41598-024-67913-x. (NAAS Score: 10.6)
7. Harry Kaur, Simranjeet Singh, Sandra Kathott Prakash, Surabhi Rode, Sapna Lonare, Rakesh Kumar, Pravindra Kumar, Ashwani Kumar Sharma, Praveen C. Ramamurthy, Joginder Singh & Nadeem A. Khan (2024). Identification and biophysical characterization of potential phytochemical inhibitors of carboxyl/choline esterase from *Helicoverpa armigera* for advancing integrated pest management strategies. *Scientific Reports* 14. (NAAS Score: 10.6)
8. Simranjeet Singh, Pavithra N., Harry Kaur, Radhika Varshney, Nadeem A. Khan, Rakesh Kumar, Ashwani Kumar Sharma, Joginder Singh & Praveen C. Ramamurthy (2024). Enzyme-based sensor for the real-time detection of atrazine: Evidence from electrochemical and docking studies. *Scientific Reports* 14. (NAAS Score: 10.6)
9. Tenguri Prabhulinga, Kranthi Sandhya, Naik Chinna Babu, Mari Amutha, Kumar Rishi, Suke Ruchika, Nagrare Vishlesh Shankar, Narkhedkar Nandini Gokte, Waghmare Vijay Namdeo and Prasad Yenumula Gerard. (2024). The comparison of species diversity and abundance of insect natural enemies in the domesticated species of cotton using the yellow pan trap method. *Scientific Reports* 10.1038/s41598-023-48347-3. (NAAS Score: 10.6)
10. Madhu Tadagavadi Nagaraju, Kamanur Murali Mohan, Manikyanahalli Chandrashekara Keerthi, Tenguri Prabhulinga, Shivaji Thube, Vivek Shah, Hosam O. Elansary, Ihab Mohamed Mousa & Mohamed A. El-Sheikh (2024). Effect of temperature on the biological parameters of pink bollworm, *Pectinophora gossypiella* Saunders (Lepidoptera: Gelechiidae). *Scientific Reports* 14: 17882. (NAAS Score: 10.6)
11. Sain SK, Gawande SP, Kumar V, Chandrashekhar N, Prakash A. H. and Y. G. Prasad (2024). First Report of Target Spot caused by *Corynespora cassiicola* on Cotton in Northwestern India. *Plant Disease* 108 (2): 530. (NAAS Score: 10.4)
12. Parida P.K., Somasundaram E., Krishnan R., Radhamani S., Sivakumar U., Parameswari E., Raja, R. (2024). Machine learning approaches for estimation of the fraction of absorbed photosynthetically active radiation and net photosynthesis rate of maize using multi-spectral sensor. *Helixon* 10(13): e34117 (doi: 10.1016/j.heliyon.2024.e34117). (NAAS Score: 10)
13. Maity, A., Paul, D., Rocha, R.L., Bagavathiannan, M., Beckie, H.J. and Ashworth, M.B. (2024). Intensive

cropping influences the success of seed dormancy breaking methods in Australian collected *Hordeum*, *Avena*, and *Bromus* sp. *Pest Management Science* 81(4):2133-2143. DOI: 10.1002/ps.8616 (NAAS Score: 10)

14. Jain H, Rawal E, Kumar P, Sain SK, Siwach P. (2024). In Silico Investigation of the Interactions Between Cotton Leaf Curl Multan Virus Proteins and the Transcriptional Gene Silencing Factors of *Gossypium hirsutum* L. *Journal of Molecular Evolution* 92(6):891-911. (NAAS Score: 9.9)

15. Blaise, D., Desouza, N.D., Singh, A. (2024). Satellite based measurements of temporal and spatial variations in C fluxes of irrigated and rainfed cotton grown in India. *Remote Sensing Applications Society and Environment* 36: 101365. (NAAS Score: 9.8)

16. Parida P.K., Somasundaram E., Krishnan R., Radhamani S., Sivakumar U., Parameswari E., Raja, R., Rangasami S.R.S., Sangeetha S.P., Selvi R.G. (2024). Unmanned Aerial Vehicle-Measured Multispectral Vegetation Indices for Predicting LAI, SPAD Chlorophyll, and Yield of Maize. *Agriculture* 14, 1110. <https://doi.org/10.3390/agriculture14071110>. (NAAS Score: 9.6)

17. Patra, S., Chakraborty, D., Verma, V.K., Pande, R., Sangma, R., Chakraborty, M., Layek, J. and Hazarika, S. (2024). Influence of shifting thermal regimes on tomato fruit borer, *Helicoverpa armigera* (Hubner) in the Eastern Himalaya: implications for pest management strategies. *International Journal of Biometeorology* <https://doi.org/10.1007/s00484-024-02741-2>. (NAAS Score: 9.2)

18. Alagarsamy, M. (2024). Combining ability studies in *desi* cotton (*Gossypium arboreum* L.) genotypes. *Journal of Cotton Research* 7, 37. <https://doi.org/10.1186/s42397-024-00200-2>. (NAAS Score: 9.1)

19. Mawblei, C., Premalatha, N., Manivannan, A. et al. (2024). Characterization and screening of cotton (*Gossypium hirsutum* L.) germplasm for leafhopper (*Amrasca biguttula* *biguttula* (Ishida)) resistance. *Journal of Cotton Research* 7, 19. <https://doi.org/10.1186/s42397-024-00182-1>. (NAAS Score: 9.1)

20. Jain H, R Kaur, SK Sain, P Siwach. (2024). Development, Design, and Application of Efficient siRNAs against Cotton Leaf Curl Virus-Betasatellite Complex to Mediate Resistance against Cotton Leaf Curl Disease. *Indian Journal of Microbiology* 1-14. (NAAS Score: 9)

21. Sivakumar, S., Manickam, S., Madhu, B., Kumar, K. B., and Iyanar, K. (2024). Feasibility studies on plant architecture traits influence on seed cotton yield of *Gossypium hirsutum* zero monopodial genotypes and assessment of ecological suitability to machine harvesting. *Turkish Journal of Agriculture and Forestry* 48: 634-646. (NAAS Score: 8.9)

22. Manivannan Alagarsamy, Thomas Cheeran Amal, Shankarganesh Karuppan, Karthikeyan Adhimoolam (2024). Comparative proteomic analysis of resistant and susceptible cotton genotypes in response to leaf hopper infestation. *Journal of Proteomics* 303, 105258, <https://doi.org/10.1016/j.jprot.2024.105258>. (NAAS Score: 8.8)

23. Shivaji Haura Thube, R Pandian, M Rajkumar, Merin Babu, A Josephrajkumar, BJ Nirmal Kumar, Vinayaka Hegde, Balanagouda Patil, H Rajashekara, T Prabhulinga, Babasaheb B Fand, Shailesh Gawande, Dipak Nagrale, M Devindrappa, MK Rajesh (2024). *Euwallacea perbrevis* (Schedl, 1951) and associated novel fungal symbiont, *Fusarium* sp.: A potential cause of wilting in cocoa, *Theobroma cacao* in India. *Crop Protection* <https://doi.org/10.1016/j.cropro.2024.106754>. (NAAS Score: 8.8)

24. Kumar, Rishi, Sain, S.K., Singh, S., Pandher, S., Meena, R.S., Jakhar, A., Kaur, J., Pathania, M., Paul, D., Prakash, A.H. and Prasad, Y.G. (2024). Investigating the second whitefly population outbreak within a decade in the cotton growing zone of North India. *Peer J* DOI 10.7717/peerj.17476. (NAAS Score: 8.7)

25. Nankade Vaishnavi A., Fand Babasaheb B., Lavhe N.V., Thube Shivaji H., Gawande Shailesh P., Nagrale D.T., Borkar S.L., Pillai Tini S., Nikoshe Akash, Prasad Y.G. (2024). A GIS-coupled thermal response model for predicting the population growth potential of the red cotton bug, *Dysdercus koenigii* (Fabricius) (Hemiptera: Pyrrhocoridae) in India under climate change conditions. *Journal of Thermal Biology* <https://doi.org/10.1016/j.jtherbio.2024.104010>. (NAAS Score: 8.7)

26. K. Baghylakshmi, A.R. Priyanka, G. Sarathapriya, S. Ramchander, A.H Prakash. (2024). Genetic improvement of fiber quality in tetraploid cotton: an overview of major QTLs and genes involved in and edited for the quality of cotton fibers. *Journal of Cotton Research* 7:33. (NAAS Score: 8.6)

27. Kaur, Taranjeet, Shiwani Mandhania, Vikram Singh, Rashi Datten, Prakash Banakar, Karmal Malik, K. Sankaranarayanan (2024). Differential biochemical and physiological responses to cotton leaf curl virus infection in contrasting cotton genotypes. *Acta Physiologae Plantarum* 46 (4): 46. (NAAS Score: 8.6)

28. Ramteke R., Rajput L. S., Nataraj V., Tiwari S., Borah M., Kumar S., Shivakumar M., Ratnaparkhe M. B., Mandloi S., Jaiswal S., Maheswari H. S., and Vishwakarma R. (2024). Evaluation of soybean genotypes for resistance to collar rot (*Sclerotium rolfsii*) under field and glasshouse condition. *Tropical Plant Pathology* <https://doi.org/10.1007/s40858-024-00652-6>. (NAAS Score: 8.5)

29. Maranna, S., Nataraj, V., Kumawat, G., Mehetre, S.P., Reddy, R., Jaybhay, S., PG, S., Rathod, S., Agrawal,

N., Rajesh, V., Kumar, S., Rajput L.S., Talukdar A., Gireesh C., Chandra Subhash, Ratnaparkhe, M.B., Ramteke, R., Satpute, G.K., Gupta, S. and K.H. Singh (2024). Understanding of Gx E interactions of yield attributes in soybean MAGIC population and characterization for charcoal rot resistance. *Agronomy Journal* <https://doi.org/10.1002/agj2.21572>. (NAAS Score: 8.1)

30. K. Baghylakshmi, S. Ramchander, N. Jagadeeshselvam, M. Raveendran, & P. Jeyaprakash. (2024). Comparative transcriptome profiling to untie the drought tolerance molecular mechanism of backcross rice (*Oryza sativa* L.) inbred. *Plant Breeding* 1-13. (NAAS Score: 8)

31. Balanagouda Patil, Shankarappa Sridhara, R. Thava Prakasa Pandian, Shivaji Hausrao Thube, Nandeesha C V, Pruthviraj, Ryan Casini, Fahed A. Almana & Hosam O. Elansary (2024). Evaluation of oomycete-specific fungicides and application strategies for controlling fruit rot disease on arecanut (*Areca catechu* L.). *Cogent Food & Agriculture* DOI: 10.1080/23311932.2024.2314227. (NAAS Score: 8.0)

32. Shah Vivek, Rachna Pande, Pooja Verma, Prabhulinga T., Shivaji Thube, Babasaheb B. Fand, Madhu T.N., Nandini Gokte-Narkhedkar and Y. G. Prasad (2024). Evaluation of vegetable oil as oviposition deterrents for the management of pink bollworm, *Pectinophora gossypiella* (Saunders) in cotton. *Journal of Plant Disease and Protection* 131: 403-412. (NAAS Score: 8)

33. Kumar, P., Paul, D., Jhajhriya, S., Kumar, R., Dutta, S., Siwach, P. and Das, S. (2024). Understanding heat-shock proteins abundance and pivotal function under multiple abiotic stresses. *Journal of Plant Biochemistry and Biotechnology* doi.org/10.1007/s13562-024-00932-x. (NAAS Score: 7.9)

34. Paul, D., Chakrabarty, S.K., Nain, L. and Maity, A. (2024). Studies on key seed physico-chemical factors and climatic variables regulating hardseededness in green gram (*Vigna radiata* L.) genotypes. *Crop & Pasture Science* doi: 10.1071/CP24259. (NAAS Score: 7.9)

35. Kumar Rakesh, Das Joy, Puttaswamy Raghavendra Keelara, Kumar Manoj, Balasubramani Ganesan, Prasad Yenumula Gerard (2024). Targeted genome editing for cotton improvement: prospects and challenges. *Nucleus* <https://doi.org/10.1007/s13237-024-00479-1>. (NAAS Score: 7.8)

36. Paul, D., Chakrabarty, S.K., Nain, L. and Maity, A. (2024). Genotype and harvesting time influence development of hard seeds and its physico-chemical constituents in green gram (*Vigna radiata* (L.) (Wilczek)). *Plant Physiology Reports* doi.org/10.1007/s40502-024-00848-7. (NAAS Score: 7.5)

37. Dutta, S., Paul, D., Das, A., Kumar, S., Roy, A., Barua, A. and Chinnusamy, V. (2024). Directed mutagenesis in plants through genome editing using guide RNA library. *The Nucleus* doi.org/10.1007/s13237-024-00481-7. (NAAS Score: 7.5)

38. Paul, D., Kumar, R., Balasubramani, G., Bagri, S., Chandra, S., Manickam, S., Singh, S., Prakash, A.H. and Prasad, Y.G. (2024). Quantitative Analysis on Expression of Insecticidal Crystal Proteins in Different Plant Parts of BG-II Cotton Hybrids at Various Phenological Stages. *Agricultural Research* 13:1-9, doi.org/10.1007/s40003-024-00763-1. (NAAS Score: 7.4)

39. Paul, D., Chakrabarty, S.K., Chawla, G., Kundu, A. and Maity, A. (2024). Assessment of Hardseededness and Its Seasonal Dynamics through Scanning Electron Microscopy in Green Gram (*Vigna radiata*) Genotypes. *Agricultural Research* doi.org/10.1007/s40003-024-00751-5. (NAAS Score: 7.4)

40. Manikandan, A., Blaise, D., Nalayini, P., Nagrare, V., Prasad, Y.G. (2024). Intercropping legumes with high density cotton to improve the land use efficiencies of rainfed Vertisols of India. *Agricultural Research* DOI: 10.1007/s40003-024-00833-4. (NAAS Score: 7.4)

41. Rao Naveen, Gaur Ram Karan, Singh Satnam, Rachna R.R., Kumar Rishi, Pandher Suneet, Kaur Ramandeep, Yadav Sunita, Udkeri Shashikant S., and Srinivas A.G. (2024). Thrips composition in north Indian cotton agroecosystem: a single species or a species complex. *Phytoparasitica* <https://doi.org/10.1007/s12600-024-01120-2>. (NAAS Score: 7.4)

42. Pon Arasan A., Radhamani S., Pazhanivelan S., Kavitha R., Raja R., Kumaraperumal R. (2024). Mapping and monitoring of weeds using unmanned aircraft systems and remote sensing. *Plant Protection Science* <https://doi.org/10.17221/74/2024-PPS>. (NAAS Score: 7.3)

43. Dhanorkar, T.B., Velmourougane, K., Harinkhede, L.R., Bhardwaj J., Vaidya, Bhoyar, S.N., Manikandan, A., Blaise, D., Mundafale, C., Prasad, Y.G. (2024). Legume intercropping in cotton under high-density planting system enhances soil biological health and nutrient availability in rainfed Vertisol. *National Academy Science Letters* <https://doi.org/10.1007/s40009-024-01533-x>. (NAAS Score: 7.1)

44. Vanitha, Kaliaperumal; Jacob, David Karamankodu; Thube, Shivaji; Prakasa Pandian, R. Thava; Raviprasad, Thippagonaiah Nagaiya; Rajashekara, Hosahatti (2024). The first record of conopid fly *Zodiomyia sumbaensis* as a parasitoid of a reed bee *Braunsapis mixta*. *Bulletin of Insectology* eISSN 2283-0332. (NAAS Score: 7.2)

45. Paul, D., Chakrabarty, S.K., Dutta, S. and Dikshit, H.K

(2024). Studies on Identification of Putative SSR Markers Linked with Hardseededness in Mung Bean (*Vigna radiata* L.) Using Bulk Segregant Analysis. *National Academy Science Letters* <https://doi.org/10.1007/s40009-024-01570-6>. (NAAS Score: 7.1)

46. Suman Bala Singh, H B Santhosh, KR Kranthi, G Balasubramani, B Fande, V Shah, GI Ramakrushna, AH Prakash, S Manickam, K Baghylakshmi, V Santhy, K. Gaikwad and G Gawande. (2024). Variety release Notification, ICAR, CICR 25Bt. *Indian J of Genet Plant Breeding* 84(1); 139-141. (NAAS Score: 7)

47. Paul, D., Kumar, R. and Prasad, Y.G (2024). Blending procedure is crucial for BG-II cotton hybrids to adhere to the prescribed 'Refugia in Bag' standards. *Current Science* 127(1). doi: 10.18520/cs/v127/i1/101-104. (NAAS Score: 7)

48. Santosh, S., Velmourougane, K., Verma, P., Santosh, H.B., Blaise, D. (2024). Cotton-mycorrhizal symbiosis: a comprehensive review of benefits for sustainable agriculture. *Israel Journal of Plant Sciences* doi: 10.1163/22238980-bja10109. (NAAS Score: 7)

49. Rashmi Mayank, Murmu Sneha, Nagrale Dipak T., Singh Mahender Kumar, Behera Santosh Kumar, Shankar Raja, Ranjan Rajiv, Jha Girish Kumar, Chaurasia Anurag, Kumar Sunil (2024). Dataset on double mutation in PGIP of *Glycine max* improves defense to PG of *Sclerotinia sclerotiorum*. *Data in Brief* 54:110518, <https://doi.org/10.1016/j.dib.2024.110518>. (NAAS Score: 7)

50. Madhu, B., Sivakumar, S., Manickam, S., Murugan, M., Rajeswari, S. and Boopathi, N. M. (2024). Evaluating morphological and biochemical traits in cotton genotypes mediating resistance to leafhopper *Amrasca biguttula biguttula* (Ishida). *Pakistan Journal of Agricultural Sciences* 61:103-115. (NAAS Score: 6.8)

51. Rathinavel S., Kavitha R., Surendrakumar A., Kannan B., Raja R., Sivakumar S.D., Kalarani M.K. (2024). Leaf colour chart-guided prescription mapping for unmanned vehicle-assisted nitrogen dispensation in rice (*Oryza sativa* L.). *Journal of Animal & Plant Sciences* 34(6): 1486-1496 (<https://doi.org/10.36899/JAPS.2024.6.0826>). (NAAS Score: 6.7)

52. Alagarsamy, M., Karuppan, S., Amal, T. C., and Markkandan, K. (2024). Sequencing and analysis of the complete mitochondrial genome of *Amrasca biguttula biguttula* Ishida, 1913 (Hemiptera: Cicadellidae: Typhlocybinae: Empoascini). *Mitochondrial DNA Part B* 9(6), 725-728. <https://doi.org/10.1080/23802359.2024.2358958>. (NAAS Score: 6.5)

53. Kumari, S., Chakrabarty, S. and Paul, D (2024). Influence of pre-harvest climatic variables and natural storage duration on seed physico-chemical profile in diverse maturity groups of rice (*Oryza sativa*) varieties. *Indian Journal of Agricultural Sciences* 94 (6): 600–605. (NAAS Score: 6.13)

### 10.1.2 Research papers (NAAS Score<6)

1. Manna Sheersa, Gawande Shailesh Pandurang, Meshram Mithila Deorao, Ingle Rajesh, Nagrale Dipak (2024). Phenotypic and genetic characterization of *Xanthomonas citri* pv. *Malvacearum* strains affecting upland cotton in Central India. *Indian Phytopathology* <https://doi.org/10.1007/s42360-024-00713-5>. (NAAS Score: 5.97)
2. Baghylakshmi, K. Priyanka, A.R., Aravind, K. and Manickam, S. (2024). Genetic analysis for estimating combining ability in *Gossypium hirsutum* L. x *Gossypium barbadense* L. hybrids. *Electronic Journal of Plant Breeding* 15: 21-30. (NAAS Score: 5.6)
3. Ananda Lekshmi, L., Kumar, M., Rajeswari, S., Raveendran, M., Uma, D. and Manickam, S. (2024). Assessment of heterotic potential and association analysis in direct and reciprocal hybrids for seed cotton yield and fiber quality traits involving lintless – fuzzless genotypes in upland cotton (*Gossypium hirsutum* L.). *Electronic Journal of Plant Breeding* 14: 410-418. (NAAS Score: 5.6)
4. Tamilmounika R., Muthumanickam D., Pazhanivelan S., Ragunath K.P., Kumaraperumal R., Sivamurugan A.P. and Raja R. (2024). Spatial Chlorophyll Estimation from Rice Field using Drone-derived Spectral Indices. *Indian Journal of Agricultural Research* doi: 10.18805/ IJARe. A-6267. (NAAS Score: 5.6)
5. Paul, D., Kumar, R., Verma, S.K., Singh, A. and Bagri, S., (2024). Impact of Climatic Variable Induced Abiotic Stress on Flowering Pattern In BG-II Cotton (*G. hirsutum*) Hybrids. *Plant Archives* e-ISSN: 2581-6063 (online), ISSN: 0972-5210. (NAAS Score: 5.59)
6. Majare, A., Lavhe, N., Biradar, V., Pillai, T., Deshmukh, V., Nayak, D., Banu, J.G., Shah, V., B. Fand, B., Pande, R., Mhatre, P., Prabhulinga, T., Nikoshe, A., Behere, G., Prasad, Y.G., and Thube, S. (2025). Bio-efficacy of a native strain of entomopathogenic nematode, *Steinernema siamkayai* against fall armyworm, *Spodoptera frugiperda* (J.E. Smith) (Lepidoptera: Noctuidae). *Journal of Biological Control* 38(4), 406–412 <https://doi.org/10.18311/jbc/2024/45792>. (NAAS Score: 5.46)
7. Blaise. D., Sabesh. M., Prakash. A. H., and Prasad. Y.G. (August 2024). Fertilizer Use Trends and Partial Factor Productivity in Cotton Growing Region of India. *Indian Journal of Fertilisers* Vol.20 N0.8, ISSN 0973-1822, pages 28-35. (5.29)
8. Sahil D Meshram, Prabhulinga Tenguri, VK Biradar, Shivaji H Thube, Babasaheb B Fand, Vivek Shah,

Rachna Pande, V.C. Naik (2024). Investigation on the Biological Characteristics and Thermal Requirements of Egg Parasitoid *Trichogrammatoidea bactrae* on Eggs of Cotton Pink Bollworm. *Asian Research Journal of Agriculture* <https://doi.org/10.9734/arja/2024/v17i4555>. (NAAS Score: 4.86)

9. Baghylakshmi K. K. Balasubramanium, Y.G. Prasad (2024). Extra-long staple cotton in India: to meet the demand of a long-term goal. *Journal of Cotton Research and Development* 38:1-6. (NAAS Score: 4.78)
10. Verma Surender Kumar, Kumar Rishi, Sain Satish Kumar, Singh Amarpreet, Bagri Sandeep, Paul Debasish. (2024). Emerging challenges in cotton cultivation and strategies for improving productivity in north zone of India. *Journal of Cotton Research and Development* 38(1):7-18. (NAAS Score: 4.7)
11. Singh I, Jain H, Chahal S, Rani A, Kumar P, Sain SK, Siwach P (2024). Survey and Assessment of Cotton Leaf Curl Disease Severity in North- Cotton Growing Zone of India. *Annals of Biology* 40 (2): 313-320. (NAAS Score: 4.68)
12. O. P. Zalte, P. R. Panchbhai, Tini Pillai, N. V. Lavhe, Vrushali Deshmukh, Vivek Shah, Babasaheb B. Fand, Rachna Pande, T. Prabhulinga, Akash Nikoshe and Thube Shivaji (2024). Bio-efficacy Evaluation of *Beauveria bassiana* against Fall Armyworm, *Spodoptera frugiperda* (J.E. Smith). *Hexapoda* DOI: 10.55446/hexa.2024.12. (NAAS Score: 2.72)
13. Kumar, R., Paul, D., Singh, S. and Cheema, R.S (2024). Removing Potential Sources of Off-season Survival of Pink Bollworm is the Key to Reducing its Carryover in Succeeding Cotton Crops in North India. *International Cotton Researchers Association* 1-11.
14. Kumar, R., Paul, D., Sain, S.K., Singh, A., Chandra, S., Singh, S., Cheema, R.S. and Prasad, Y.G (2024). Pink Bollworm, *Pectinophora gossypiella* (Saunders) Infestation Escalates from Incipient to Serious Proportions in North Cotton Zone of India. *Journal of Crop Health* doi.org/10.1007/s10343-024-01086-5.

### 10.1.3 Other Publications

#### 10.1.3.1 Book

Arbuscular Mycorrhizal Fungi for Nutrient, Abiotic and Biotic Stress Management in Rice. 2024. Eds. Panneerselvam P, Pradeep Kumar Das Mohapatra, Nayak AK, Mitra D, Velmourougane K, Santos-Villalobos SDL. Boca Raton, CRC Press. P. 230. <https://doi.org/10.1201/9781003354086>

#### 10.1.3.2 Book Chapters

1. Velmourougane K, Prasanna R. (2024). Microbial enhancement of phosphorus availability in soil systems. In: Norman Uphoff, Janice E.Thies (Eds.) Biological Approaches to regenerative soil systems, 2nd Edition, CRC Press. pp. 181-190. DOI: 10.1201/9781003093718-20
2. Velmourougane K, Prasanna R. (2024). Biological options for stimulating phosphorus availability in soil systems. In: Norman Uphoff, Janice E.Thies (Eds.) Biological Approaches to regenerative soil systems, 2nd Edition, CRC Press. pp. 345-352. DOI: 10.1201/9781003093718-33
3. P. Valarmathi and A. Sampathkumar. (2024). Tobacco Necrosis Disease (Tobacco Streak Virus): disease symptoms and its management. Vaazhvai Viruthiyakkum Paruthi -Technical Guide to Cotton stakeholders (Tamil book). Edited by S. Usha Rani, A. Sampathkumar, M. Sabesh, A.H. Prakash, T.N. Sujeetha, M. Sathishkumar, G. Suresh. pp. 148-152 (Tamil)
4. K. Baghylakshmi, AR Priyanka, G Saradhapriya. (2024). Bt hirsutum varieties of ICAR CICR. Awareness and Extension Services on Best Farm Practices for Cotton Farmers to Improve Quality, Yield and Sustainability-Farm Field School on AIR. Edited by S. Usharani, A Sampathkumar, M. Sabesh, AH Prakash, YG Prasad, Sujeetha, M. Sathishkumar, K. Suresh. pp.19-28 (Tamil)
5. Raja, A.S.M., Arputharaj, A., Senthilkumar, T., Jagajanatha, P., Jalgaonkar, K., Patil, S., Pandiselvam, R and Manickam, S. (2024). ICAR-CIRCOT's Strategic Role in Improving Indian Cotton Quality through AICRP on Cotton. Edited by Raja, A.S.M., Arputharaj, A., Senthilkumar, T., Jagajanatha, P., Jalgaonkar, K., Patil, S., Pandiselvam, R and Manickam, S. pp. 1-143 (English)
6. Kumawat, G., Raghuvanshi, R., Vennampally, N., Maranna, S., Rajesh, V., Chandra, Subhash, Kumar, S., Rajput, L.S., Meena, L.K., Choyal, P. and Ratnaparkhe, M.B. (2024). Integrating Germplasm Diversity and Omics Science to Enhance Biotic Stress Resistance in Soybean. Genomics-aided Breeding Strategies for Biotic Stress in Grain Legumes. Edited by Parihar, A.K., Bohra, A., Lamichaney, A., Mishra, R., Varshney, R.K. pp. 327-358 (English)
7. Tripathi, R., Agrawal, N., Maranna, S., Nataraj, V., Chandra, Subhash, Kumawat, G., Meghwal, P., Kumar, A., Ratnaparkhe, M.B., Nagar, S. and Gupta, S. (2024). Speed Breeding: Rapid Method for Generation Advancement and Development of Crop Varieties. Plant Molecular Breeding in Genomics Era. Advances in Plant Breeding Strategies. Edited by Al-Khayri, J.M., Ingle, K.P., Jain, S.M., Penna, S. pp. 111-128 (English)
8. Ratnaparkhe, M.B., Raghuvanshi, R., Nataraj, V., Maranna, S., Chandra, Subhash, Kumawat, G., Kavishwar, R., Suravajhala, P., Prasad, S.H., Vishnudasan, D. and Subramanian, S. (2024).



Population Genomics of Soybean. Population Genomics: Crop Plants. Edited by Rajora, O.P. pp. 573–605 (English)

9. Ratnaparkhe, M.B., Raghuvanshi, R., Shrotri, R., Nataraj, V., Shivakumar, M., Chandra, Subhash, Kumawat, G., Kavishwar, R., Shesh, N., Yadav, N. and Rajesh, V. (2024). Allele Mining in Soybean. Allele Mining for Genomic Designing of Oilseed Crops. Edited by Kole, C., Pandey M. K., Puppala, N. pp. 13-51(English)
10. Raja R., Usharani S., Sampathkumar A., Tamil Amutham, G., Karthik A., Suresh K. Prakash A.H., Prasad Y.G. (2024). Paruthi sagupadiyil iyanthiramayamakkalin pangu. Vazhvai viruthiyakkum Paruthi (Prosperous life through Cotton). Edited by Usharani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha, T.N., Sathishkumar M., Suresh G. pp. 147-154 (Tamil)
11. Sabesh. M, Sujeetha. T.N, Sathyamoorthy. G, Madhumitha. R. (2024). Computer's role in Cotton Cultivation. Prosperous life through cotton. Edited by Usha Rani. S, Sampathkumar. A, Sabesh. M, Prakash. A.H, Prasad. Y.G, Sujeetha. T.N, Sathishkumar. M, Suresh. G. pp. 161-174 (Tamil)
12. Prakash. A.H, Sabesh. M. (2024). Technological Intervention to Enhance Cotton Productivity in Tamil Nadu. Future Prospects of Cotton Farming in Tamil Nadu. Edited by Somasundaram. S, Anantharaju. P, Dhamodharan.P, Santhosh Jeyaraj. R.P, Kalarani. M. K, Subramaniyan. K. pp. 3-16 (English)
13. Dutta, S., Paul, D., Garai, S., Roy, A. and Kumar, S. (2024). Unveiling the Role of Arbuscular Mycorrhiza in Seed Germination. New Perspectives on Seed Germination. Edited by Prof. Ertan Yildirim, Associate Prof. Sitki Ermis and Associate Prof. Eren Özden. pp. 1-24 (English)
14. A Manivannan, Amal T Cheeran, A. Shanmugam, A. Jalapathi, and S. Prasand. (2024). Mika neenda elai paruthi urpathiyil Egyptia ragangal. In: vaalvai viruthiyakkum paruthi. vaalvai viruthiyakkum paruthi- All India Radio Farm School. Edited by S Usharani, A Sampathkumar, S Sabesh, A H Prakash, YG Prasath, T N Sujitha, M Sathiskumar, and K. Suresh. pp.13-18 (Tamil)
15. K Rameash. (2024). Cotton Pink bollworm: Integrated Pest Management Strategies. Farm School on AIR - Cotton Production Technologies. Edited by Usha Rani et al. pp.111-116 (Tamil)
16. Sampathkumar A., Valarmathi P., Usha Rani S., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Cotton Diseases and Integrated Management Practices. Prosperous Life through Cotton - Farm Field School on AIR- Cotton Cultivation Technologies. Edited by Dr Usha Rani S., Dr Sampathkumar A., Dr Sabesh M., Dr Prakash A.H., Dr Prasad Y.G., Dr Sujeetha T.N., Sathishkumar M. and Suresh G. pp. 125-140 (Tamil)
17. M. Amutha, D. Kanjana, J. Annie Sheeba, P. Valarmathi and S. Usha Rani. (2024). Emerging insect pests of cotton and their management. Vazhvai Viruthiyakkum Paruthi (Prosperous through Cotton). Edited by S. Usha Rani, A. Sampathkumar, M. Sabesh, A.H. Prakash, T.N. Sujeetha, M. Sathishkumar, G. Suresh. pp. 94-103 (Tamil)
18. Kanjana, D., Annie Sheeba, J. Valarmathi, P. Usharani, S. and Malaichamy, N. (2024). Integrated Nutrient Management for cotton yield enhancement and soil health management. Prosperous Life through Cotton - Farmers Field School on AIR (All India Radio) - Cotton Production Technologies. Edited by S. Usharani, A. Sampath kumar, M. Sabesh, A.H. Prakash, Y.G. Prasad, T.N. Sujeetha, M. Sathish Kumar, K. Suresh. pp. 61 – 65 (Tamil)
19. Meena, K.S., Banu, J.G., Prasanna, S.L., Sakthivel, K., Rajesha, G., Prasad, R.D. and M. Sujatha. (2025). Nematode Management Strategies in Organic Farming. Recent Advances in Organic Farming Research. Nematode Management Strategies in Organic Farming. Edited by Naik, M.R., Ramanjaneyulu, A.V., Hudedamani, U and Srinisava Rao. pp.169-181 (English)
20. Gulsar Banu, J. (2024). Nematode management in Cotton. Prosperous life through cotton – Farmers field school on AIR- Cotton Production Technologies. Edited by Usha Rani, S., Sampath Kumar, A., Sabesh, M., Prakash, A.H., Prasad, Sujitha, T.N., Sathish Kumar, M and Suresh K. pp. 117-124 (English)
21. Usha Rani, S., A.H. Prakash, D. Kanjana, T.N. Sujeetha and M. Sathishkumar. (2024). Cotton Cultivation - A Review. Book on Vaazhvai Viruthiyakkum Paruthi (Prosperous Life through Cotton) (Tamil), ICAR-Central Institute for Cotton Research. Edited by Usha Rani, S., A. Sampathkumar, M. Sabesh, A. H. Prakash, Y.G. Prasad, T.N. Sujeetha, M. Sathishkumar and G. Suresh. pp. 1-5 (Tamil)
22. S Usha Rani T.N. Sujeetha and M. Sathishkumar. (2024). Conventional and Contemporary Extension for Cotton Development. Book on Vaazhvai Viruthiyakkum Paruthi (Prosperous Life through Cotton) (Tamil). Edited by Usha Rani, S., A. Sampathkumar, M. Sabesh, A. H. Prakash, Y.G. Prasad, T.N. Sujeetha, M. Sathishkumar and G. Suresh. pp. 162-167 (Tamil)
23. Singh I, Jain H, Sadh PK, Chahal S, Sain SK, Sohrab SS, Siwach P. (2024). Molecular Epidemiology of Cotton Leaf Curl Virus Disease. Biotechnological Advances in Agriculture, Healthcare, Environment and Industry. Edited by Siwach P, Gahlawat SK, Salar RK, Duhan JS, Sadh PK. pp. 21-33 (English)

24. Rishi Kumar, Vivek Shah, Debashis Paul, Satpal Singh, Gurpreet Singh and Shubham Chandak. (2024). Eco-friendly Management Strategies for Insect-Pests of Cotton. Recent Advances in Ecofriendly Management of Crop Pests. Edited by Sunita Yadav, Deepika Kalkal, Harish Kumar and Varun Saini. pp.144-160 (English)

25. Rishi Kumar, Debashis Paul, Satpal Singh, and Rupinder Singh Cheema. (2024). Removing Potential Sources of Off-season Survival of Pink Bollworm is the Key to Reducing its Carryover in Succeeding Cotton Crops in North India. Cotton Innovations (ICRA). Edited by Dr. Mohamed Negm, Dr. Keshav Raj Kranthi, Dr. Eric Hequet, Dr. Jodi Scheffler, Dr. Baba B. Fand, Dr. M. Venugopalan, Mr. Hafiz and M. Imran. pp. 1-11 (English)

26. M. Amutha, D. Kanjana, J. Annie Sheeba, P. Valarmathi and S. Usha Rani. (2024). Emerging insect pests of cotton and their management. Vazhvai Viruthiyaakkum Paruthi (Prosperous through Cotton). Edited by S. Usha Rani, A. Sampathkumar, M. Sabesh, A.H. Prakash, T.N. Sujetha, M. Sathishkumar, G. Suresh. pp. 94-103 (Tamil)

### 10.1.3.3 Popular Articles

1. Valarmathi, P. and Kanjana, D. (2024). Nanoparticles: as protectants in plant disease management. AGROBIOS Newsletter, Vol. XXII (8): 37-38. 01/01/2024 (English)
2. Valarmathi, P. and Kanjana, D. (2024). Chitosan for Eco-Friendly Management of Plant Diseases. AGROBIOS Newsletter, Vol. XXII (10): 11-13. 03/01/2024 (English)
3. Valarmathi, P., Kanjana, D. and Amutha, M. (2024). Disease Management in Organic Cotton cultivation. AGROBIOS Newsletter, Vol. XXII (12): 44-45. 05/01/2024 (English)
4. Valarmathi, P. and Kanjana, D. (2024). Challenges in the application of drones in detection of plant diseases. AGROBIOS Newsletter, Vol. XXIII (3): 45-46. 08/01/2024 (English)
5. Kumaravadivelu P., Sankaranarayanan K., Agarwal Isabella, Sureshkumar S., Balaji Arun G., Sindhuja S. and Duraisamy S. (2024). Plant architecture management in cotton. SAKVK publication. 12/09/2024 (English)
6. Alagesan P., Sankaranarayanan K., Nalayini P., Srinivasan R. D., Saravanakumar S., Balaji Arun G., Thangadurai R., Ram Prabha R.G. (2024). Technology on High Density Planting System. MYRADA KV, Erode pp2. 12/24/2024 (Tamil)
7. Alagesan P., Sankaranarayanan K., Nalayini P., Srinivasan R. D., Saravanakumar S., Balaji Arun G., Thangadurai R., Ram Prabha R.G. (2024). Integrated Disease Management in Cotton. MYRADA KV, Erode, pp2. 12/24/2024 (English)
8. Venugopalan M.V., Prasad YG, Usharani S., Sankaranarayanan K., Sampathkumar A., Sabesh M., Prakash A.H., Sujitha D.N., Sathish Kumar M., Suresh G., Karthika R., Suganya G. and Balaji Arun G. (2024). High-Density Planting System Question and Answer in Tamil. CICR, Coimbatore, pp 42 12/12/2024 (Tamil)
9. Sankaranarayanan K., Nalayini P. and Balaji Arun G. (2024). High-Density planting system in cotton. CICR, Regional Station Coimbatore, pp12 12/25/2024 (Marathi, &Tamil)
10. Gangadevi M. Yugandhar M, Prasad Y.G., Sankaranarayanan K., Shaik N. Meera and Reddy A.R. (2024). Harvest and handling techniques in cotton. KVK Guntur, pp 1 11/19/2024 (Telugu)
11. Prasad YG and Sheeba JA. (2024). Regenerative Cotton Farming for Combating Climate Change - Part -I &part -II. Cotton Statistics and News, 43&44, Jan 2024 01/30/2024 (English)
12. Sheeba JA. (2024). Physiology behind Shade Avoidance Responses (SAR) under High Density Planting System (HDPS). Cotton Innovate, January 2024, pp 1-2 03/27/2024 (English)
13. Prasad Y.G., Prabhakar M., Raja, R. (2024). Remote sensing applications in cotton farming. The ICAC Recorder, XLII, No. 4: 11-16 12/01/2024 (English)
14. Prasad Y.G., Raja, R. (2024). Best Practices for Irrigated Extra Long Staple Cotton Production under High Density Planting System. Cotton Statistics and News, 39: 1-5 12/24/2024 (English)
15. Paul Debashis. (2024). Block Chain Technology for Seed Traceability. Cotton Innovate, 2024 (2): 1-3 02/13/2025 (English)
16. Prasad Y. G. and Rameash K. (2024). Artificial Intelligence and Area Wide Approaches in Tackling the Dreaded Pest of Cotton. Cotton Statistics & News, 34: 1-4 11/19/2024 (English)
17. Pande R. Ramkrushna GI, Behere GT and Prasad Y. G. (2024). Beekeeping in Integrated farming system. In: souvenir state level farming fair scientific beekeeping for sustainable livelihood, 5-12 03/14/2024 (English)
18. अमरप्रीत सिंह, ऋषि कुमार, एस. के. सैन, देवाशीष पॉल, एस. के. वर्मा, सुभाष चन्द्र, पवन सिंह कल्याणवत और संजीव कुमार. (२०२४). उत्तर भारत में बी टी संकर कपास उगाकर कैसे लाभ उठाएं. खाद पत्रिका. ६५ (जनवरी, २०२४ अंक-१): ८-१३. ०१/३१/२०२४
19. अमरप्रीत सिंह, ऋषि कुमार, एस. के. सैन, देवाशीष पॉल और संजीव कुमार. (२०२४). कपास में समेकित पोषक तत्व प्रबंधन. खेती. ७७ (दिसम्बर, २०२४ अंक-८): २१-२२. १२/१५/२०२४
20. अमरप्रीत सिंह, संजीव कुमार, ऋषि कुमार, एस. के. सैन, शैफाली, सुभाष चन्द्र, देवाशीष पॉल और एस. के. वर्मा. (२०२४). उत्तरी भारत में नर्मा-कपास की जड़ों के अच्छे विकास के लिए जरूरी बातें. केशव खेती. २३ (अप्रैल से दिसम्बर, २०२४ अंक ३ एवं ४): २-४ एवं ७. ०५/०१/२०२४

21. Singh Satpal, Kumar Rishi, Indira, Cheema Rupinder Singh & Pooniya Sajjan Kumar. (2024). Kapas mein Gulabi Sundi Nyantran. Kheti, 7:55-56 11/30/2024 (Hindi)
22. Singh Satpal, Kumar Rishi, Pooniya Sajjan Kumar, Shubham, Chandak, Rahul, Indira and Paul Debashis. (2024). Kapas ki fasal mein tinde ki sundiyo ke liye aarthik nuksaan star va nuksaan lakhshano ki pehchaan. Keshav Kheti, 23(3-4): 8-13 09/30/2024 (Hindi)
23. Singh Amarpreet, Kumar Sanjeev, Kumar Rishi, Sain, S.K., Shefali, Chandra Subhash, Paul Debashis and Verma S.K., (2024). Utari Bharat mein Narma-Kapas Ki Jado Ke Ache Vikas Ke Liye Jaroori Baaten. Keshav Kheti, 23(3-4): 2-4 09/30/2024 (Hindi)
24. Satpal Singh, Rishi Kumar, Debashis Paul & Y.G. Prasad. (2024). Band Phool aur Rosette Phool se aur pheromone trap se karen gulabi sundi ki nigrani. Kheti Dunia, 8(29): 8 07/20/2024 (Hindi)
25. Nagrale Dipak, Gawande Shailesh, Hiremani Neelkanth, Behere Gajanan, Prasad YG. (2024). Bond sad samassechi karne, upayyojana. Sakal Agrowon, 11 11/21/2024 (Marathi)
26. Gawande Shailesh, Nagrale Dipak, Hiremani Neelkanth, Behre G.T. and Prasad Y.G. (2024). Kapashit TSV Rogachi Navi Samasya. Sakal Agrowon 08/03/2024 (Marathi)
27. Maniakndan A and Prasad YG. (2024). Biochar Production- Open earth cone pit. Agrowon, 07/31/2024 (Marathi)

#### 10.1.3.4 Technical Publications

##### Folders:

1. Annie Sheeba J., Usha Rani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G. Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Leaf Reddening and Their Management in Cotton. ICAR-CICR, Regional Station, Coimbatore. ICAR- CICR/ Folder/2024 (English)
2. Annie Sheeba J., Usha Rani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Square and Boll shedding and their Management in Cotton. ICAR-CICR, Regional Station, Coimbatore. ICAR- CICR/ Folder/2024 (English)
3. Amutha M., Usha Rani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Thrips and its Management in Cotton. ICAR-CICR, Regional Station, Coimbatore. ICAR-CICR/Folder/ 2024 (English)
4. Kanjana D., Usha Rani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Importance and techniques of Soil sampling for better Cotton production. ICAR- Central Institute for Cotton

Research, Regional Station, Coimbatore. ICAR-CICR/Folder/2024 (English)

5. Manickam S., Usha Rani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., William Raja J., Senthil Kumar R., Aravind K., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Nano (CICR H-Cotton 54) Compact, High Yielding, Good Quality, Long Staple G. hirsutum variety. ICAR-CICR, Regional Station, Coimbatore. ICAR-CICR/ Folder/ 2024 (English)
6. Raja R., Usharani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Karthik A., Suresh K. (2024). Mechanization in Cotton Cultivation. ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore. ICAR-CICR/Folder/2024 (English)
7. Raja R., Usharani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Karthik A., Suresh K. (2024). Paruthi sagupadiyil iyanthiramayamakkalin pangu (Mechanization in Cotton Cultivation). ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore. ICAR-CICR/Folder/2024 (Tamil)
8. Raja R., Usharani S., Sampathkumar A., Sabesh M., Prakash A.H., Prasad Y.G., Karthik A., Suresh K. (2024). Paruthi sagupadiyil iyanthiramayamakkalin pangu ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore. ICAR-CICR/Folder/2024 (Tamil)

##### Leaflets:

1. A. Manikandan and JH. Meshram, Plant growth regulators (PGRs) registered for commercial cotton production and nutrient deficiency symptoms ICAR-CICR, Nagpur. 2023, 2023-2 2 (Marathi)
2. A. Manikandan and YG Prasad, Integrated Nutrient Management for Sustainable Cotton (Maharashtra State) ICAR-CICR, Nagpur. 2023, 2023-1 4 (Marathi)
3. Kumar Rishi, Singh Satpal and Prasad Y.G. (2024). Kapas ki katai ke uprant agami fasal mein gulabi sundi ka prakop kam karne ke liye kya karen aur kya na karen. ICAR-CICR, Regional Station, Sirsa. CICR-Leaflet/2024/01 (Hindi)
4. Kumar Rishi, Sain S.K., Singh Amarpreet, Chandra Subhash, Paul Debashis, Singh Satpal, Kumar Sanjeev, Verma S.K. and Prasad Y.G. (2024). Uttar bharat mein narma kapas ke utpaadan ke liye uchit prabandhan kriyaen ICAR-CICR, Regional Station, Sirsa. CICR-Leaflet/2024/02(Hindi) pp 6
5. Kumar Rishi, Singh Satpal and Prasad Y.G. (2024). Gulabi Sundi ka Fasal Ke Dauraan va Gair Ritu Mein Prabandhan. ICAR-CICR, Regional Station, Sirsa. CICR-Leaflet/2024/06(Hindi)
6. Ranvir Singh, Gurdeep Singh, Vijay Kumar and Rishi Kumar. Bt narme de mukhya kide bimariyan di pehchaan ate sarvpankhi roktham. Krishi Vigyan



Kendra (Khokhar Khurd), Mansa (Punjab), Punjab Agricultural University (Ludhiana), ICAR-CICR Regional Station, Sirsa & ICAR-ATARI Zone-1, Ludhiana. 2024-04 (Punjabi)

7. Sain, SK, Monga, D and Prasad YG. (2024). Milestone Achieved: AICRPs impact on cotton productivity and disease management. ICAR-CICR, Nagpur. ICAR-CICR-AICRP-01/2024(English) pp42

**Bulletins:**

1. Sampathkumar A., Usha Rani S., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Cotton Diseases: Symptoms Identification and Integrated Management Practices. ICAR-CICR, Regional Station, Coimbatore. ICAR-CICR/ Technical Bulletin/2024 (English) pp 31 ISBN: 978-93-340-9299-8
2. Sampathkumar A., Usha Rani S., Sabesh M., Prakash A.H., Prasad Y.G., Sujeetha T.N., Sathishkumar M. and Suresh G. (2024). Cotton Diseases: Symptoms Identification and Integrated

Management Practices. ICAR-CICR, Regional Station, Coimbatore. ICAR-CICR/Technical Bulletin/2024 (Tamil) pp 27, ISBN: 978-93-340-9299-32

3. Usha Rani S., Sankaranarayanan K., Sampathkumar A., Sabesh M., Prakash A.H., Sujeetha T.N., Sathishkumar M., Suresh G., Karthika R., Suganya K. and Arun Balaji K. (2024). High Density Planting System in Cotton - Questions & Answers- Tamil Translation. ICAR-CICR, Nagpur. ICAR-CICR Technical Bulletin No.1 (Tamil) pp 43. ISBN: 978-93-341-1829-250

**Training Manuals:**

1. Usha Rani. S, Sampathkumar. A, Sabesh. M, Prakash. A.H, Prasad. Y.G, Sujeetha. T.N, Sathishkumar. M, Suresh. G. (March 2024). Computer's role in cotton cultivation. Edited by Usha Rani. S, Sampathkumar. A, Sabesh. M, Prakash. A.H, Prasad. Y.G, Sujeetha. T.N, Sathishkumar. M, Suresh. G., p 161-174 (Tamil).

## 10.2: List of on-going projects

| SN | Project title and Investigators<br><b>Crop Improvement (20)</b>                                                                                                                                                                                                                                    | Duration                     | EFC      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|
| 1. | Development of varieties with high boll weight, ginning percent, fiber traits and disease resistance in <i>G. arboreum</i> and <i>G. hirsutum</i> . <b>V.N. Waghmare (PI)</b> , Shailesh Gawande                                                                                                   | Institute*<br>(2024-2028)    | <b>1</b> |
| 2. | Collection, conservation, evaluation, documentation and maintenance of germplasm of cultivated species of <i>Gossypium</i> . <b>Vinita Gotmare (PI)</b> , S.S. Mahajan, M. Saravanan, N. S. Hiremani, Manickam, A.H. Prakash, A. Manivannan, Debashis Paul, Anjali Kak                             | Institute<br>(2018-2028)     | <b>1</b> |
| 3. | Genetic diversity and utilization of wild germplasm for cotton improvement. <b>Vinita Gotmare (PI)</b> , Rachna Pande, Neelkanth Hiremani, Rakesh Kumar, A H Prakash, M. Saravanan, K. Baghylakshmi, Subhash Chandra                                                                               | Institute*<br>(2023-2028)    | <b>1</b> |
| 4. | Development of <i>Bt</i> hybrids in tetraploid cotton with high yield, superior fibre quality and tolerance to jassids. <b>M. Saravanan (PI)</b> , Rahul M. Phuke, Amudha J.                                                                                                                       | Institute<br>(2022-2027)     | <b>1</b> |
| 5. | Rapid development of high-yielding <i>Bt</i> cotton varieties amenable for high-density planting system. <b>Rahul M. Phuke (PI)</b> , Ramkrushna GI, Raghavendra KP, Vivek Shah, Neelakanth S. Hiremani, S. Manickam, K. Baghylakshmi, K. Rameash, A. Sampathkumar, Subhash Chandra, Debashis Paul | Institute*<br>(2023-2028)    | <b>1</b> |
| 6. | Advancement of MAGIC population to development of core set for genetic mapping and identification of potential inbred lines. <b>Rahul M. Phuke (PI)</b>                                                                                                                                            | Institute<br>(2022-2026)     | <b>1</b> |
| 7. | Mapping QTL's for drought tolerance in Cotton. <b>J. Amudha (PI)</b> , Jayanth Meshram, M. Saravanan                                                                                                                                                                                               | Institute*<br>(2024-2027)    | <b>1</b> |
| 8. | Genome editing in cotton: Enhancing climate resilience and ensuring food security with genome editing tools. <b>Raghavendra K.P. (CCPI)</b> , Jayant Meshram, Joy Das, Rakesh Kumar, Pooja Verma, Rahul Phuke                                                                                      | <b>ICAR-EFC</b><br>(2024-26) | <b>1</b> |



| SN  | Project title and Investigators                                                                                                                                                                                                                                            | Duration                               | EFC |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
| 9.  | Development of transgenic cotton events for RNAi of chitin synthesis genes from pink bollworm. <b>Joy Das (PI)</b> , Rakesh Kumar, K P Raghavendra                                                                                                                         | Institute*<br>(2024-2029)              | 1   |
| 10. | Structure-function relationship studies on farnesol dehydrogenase from <i>Helicoverpa armigera</i> (Hübner) for developing novel insect growth regulatory molecules. <b>Ashwani Sharma (PI)</b> (IIT Roorkee), Pravindra Kumar (IIT Roorkee), <b>Rakesh Kumar, Joy Das</b> | <b>DST SERB</b><br>CRG<br>(2024-2027)  | 1   |
| 11. | Precise base editing in Acetolactate synthase gene (ALS Gene) for herbicide tolerance in Cotton. <b>Rakesh Kumar (PI)</b> , Joy Das                                                                                                                                        | Institute<br>(2022-2027)               | 1   |
| 12. | Implementation of PVP legislation 2001 and DUS testing of cotton under ICAR-SAU system. <b>V. Santhy (PI)</b> , A. Manivannan                                                                                                                                              | <b>DUS, ICAR</b><br>(From 2003)        | 1   |
| 13. | AICRP on Seeds (Crops)<br><b>V. Santhy (PI)</b> , Sunil Mahajan, Debasish Paul                                                                                                                                                                                             | <b>AICRP(Seeds)</b><br>(From 2007)     | 1   |
| 14. | Development of long staple Bt varieties with improved ginning out turn. <b>S. Manickam (PI)</b>                                                                                                                                                                            | Institute*<br>(2024-2029)              | 1   |
| 15. | Breeding for compact, high ginning out turn (GOT) and high yielding extra-long staple <i>G. barbadense</i> white and colored lint. <b>A. Manivannan (PI)</b>                                                                                                               | Institute*<br>(2024-2029)              | 1   |
| 16. | Development of transgenic HxB ELS hybrids with enhanced yield and fiber quality combined with improved tolerance against biotic stress. <b>K. Baghylakshmi (PI)</b> , M. Amutha, A. Sampath Kumar                                                                          | Institute*<br>(2024-2029)              | 1   |
| 17. | Molecular mapping for CLCuD resistance in upland cotton <i>G. hirsutum</i> (L.). <b>S. K. Verma (PI)</b>                                                                                                                                                                   | Institute*<br>(2024-2026)              | 1   |
| 18. | Development of varieties of upland cotton having better fiber traits and tolerance to CLCuD. <b>Subhash Chandra (PI)</b>                                                                                                                                                   | Institute<br>(2017-2025)               | 1   |
| 19. | Combating seedling burning in cotton through induction of early heat tolerance in North zone. <b>Debasish Paul (PI)</b> , Subhash Chandra, Amarpreet Singh, K. Velmourougane                                                                                               | Institute*<br>(2023-2026)              | 1   |
| 20. | Bollworm resistance by Bt genes in cotton.<br>Raghavendra K.P, Joy Das, Rakesh Kumar, Pooja Verma, Rahul Phuke                                                                                                                                                             | <b>AINP Biotech Crops</b><br>(2024-26) | 1   |

### Crop Production (27)

|     |                                                                                                                                                                                                                                                                                                      |                                       |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|
| 21. | ICAR-Network Project on Precision Agriculture. <b>Y.G. Prasad (PI)</b> , Blaise Desouza, R. Raja, Amarpreet Singh, K. Rameash, B.B. Fand, Shailesh Gawande, Dipak Nagrale, N. S. Hiremani, P. Nalayini, A. Manikandan, D. Kanjana, J. H. Meshram, Pooja Verma                                        | <b>NePPA</b><br>(2022-2027)           | 3 |
| 22. | Special project on cotton: Targeting technologies to agro -ecological zones- large scale demonstrations of best practices to enhance cotton productivity. <b>Y.G. Prasad (PL), A. S. Tayade (PI)</b> , (Selected Scientists as Co-PIs cum Nodal officers of different districts as per Office order) | <b>MoT &amp; MoAFW</b><br>(2023-2026) | 5 |
| 23. | Effects of varied canopy management and mulching on growth and productivity and profitability of cotton. <b>A.S. Tayade (PI)</b> , Ramkrushna G.I., K. Velmourougane, A. Manikandan                                                                                                                  | Institute*<br>(2024-2027)             | 3 |
| 24. | Long-term impacts of sub-soiling and cover crop rotation on soil properties and N requirement of cotton. <b>D. Blaise (PI)</b> , R. K. Singh (ICAR-IISS, Bhopal)                                                                                                                                     | Institute<br>(2022-2026)              | 3 |
| 25. | Landscape Diagnostic Survey of cotton production practices and crop performance in Maharashtra. <b>Ramkrushna GI (PI)</b> , A.R. Reddy, Jaya Kumaravaradan, Shailesh Gawande, Rahul M. Phuke, M. Sabesh, Ranjit Kumar Paul (IASRI)                                                                   | <b>RGSTC</b><br>(2022-2024)           | 3 |
| 26. | Quantitative estimation of carbon and moisture fluxes over the cotton based agro-ecosystem: Integrating ground observations, satellite data and modelling. <b>Ramkrushna G.I. (PI)</b> , A. Manikandan                                                                                               | <b>NCP</b><br>(2017-2025)             | 3 |

| SN  | Project title and Investigators                                                                                                                                                                                                           | Duration                       | EFC |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| 27. | Validation and refinement of organic cotton production technology. <b>Ramkrushna G.I. (PI)</b> , Rachna Pande, Neelakanth S. Hiremani                                                                                                     | Institute*<br>(2021-2027)      | 4   |
| 28. | Nutrient profile-based fertilizer management in rainfed <i>Bt</i> -Cotton. <b>A. Manikandan (PI)</b> , K. Sankarnarayanan                                                                                                                 | Institute<br>(2022-2025)       | 3   |
| 29. | Study on different saturated biochar application for regenerative cotton and enhancing soil health. <b>A. Manikandan (PI)</b> , D. Blaise, A.S. Tayade                                                                                    | Institute*<br>(2024-2029)      | 3   |
| 30. | Establishment of cosmic ray soil moisture instrument for validation of model computed soil moisture under national hydrology project. <b>A. Manikandan (PI)</b> , Ramkrushna G.I.                                                         | <b>NRSC</b><br>(2023-2026)     | 3   |
| 31. | Evaluation of chemical defoliants augmenting leaf senescence for mechanical picking in Bt Cotton. <b>J.H. Meshram (PI)</b>                                                                                                                | <b>DST-SERB</b><br>(2022-2025) | 3   |
| 32. | Bioprospecting microbial volatiles for the management of major foliar and root diseases of cotton. <b>K. Velmourougane (PI)</b> , Shailesh Gawande, Dipak T. Nagrale                                                                      | Institute*<br>(2023-2026)      | 4   |
| 33. | Microbially mediated abiotic stress (drought and waterlogging) tolerance in cotton. <b>K. Velmourougane (PI)</b> , J.H. Meshram, Raghavendra K.P, J. Annie Sheeba                                                                         | Institute*<br>(2023-2026)      | 3   |
| 34. | Phytohormone profiling by targeted metabolomics in cotton. <b>Pooja Verma (PI)</b> , Joy Das                                                                                                                                              | Institute<br>(2021-2025)       | 3   |
| 35. | Impact of High-Density Planting System and Closer Spacing on cotton productivity and farmers' livelihood under rainfed conditions. <b>R. Jaya Kumaravaradan (PI)</b> , Y. G. Prasad, A. S. Tayade, Ramkrushna G.I., K. Sankarnarayanan    | Institute*<br>(2024-2026)      | 3   |
| 36. | Elucidation of radiation use efficiency of cotton genotypes with altered canopy architecture and planting geometries. <b>A.H. Prakash (PI)</b> , S. Manickam, R. Raja                                                                     | Institute<br>(2024-2026)       | 3   |
| 37. | Adoption and validation of best management practices for yield enhancement in extra-long staple cotton. <b>R. Raja (PI)</b> , J. Usha Rani                                                                                                | Institute*<br>(2024-2027)      | 4   |
| 38. | Integrated Nitrogen management under elevated CO <sub>2</sub> . <b>P. Nalayini (PI)</b> , K. Sankarnarayanan, A.H. Prakash, M. Amutha                                                                                                     | Institute*<br>(2023-2026)      | 3   |
| 39. | Evaluation of agro techniques to overcome the impact of weather aberrations (drought, water logging) in ELS cotton. <b>K Sankarnarayanan (PI)</b> , P. Valarmathi, J.H. Meshram                                                           | Institute<br>(2020-2026)       | 4   |
| 40. | Formulation of customized fertilizers for cotton. <b>D Kanjana (PI)</b> , R. Raja, Usha Rani                                                                                                                                              | Institute<br>(2021-2025)       | 3   |
| 41. | Effect of long-term application of organic and inorganic sources of nutrients on continuous cultivation of Bt and non Bt cotton with maize and wheat cropping system under irrigated conditions. <b>D. Kanjana (PI)</b> , Amarpreet Singh | Institute<br>(2017-2025)       | 3   |
| 42. | Identification and characterization of germplasm lines and advance breeding with higher photosynthetic efficiency and harvest index for better yield in cotton. <b>J. Annie Sheeba (PI)</b> , S. Manickam                                 | Institute*<br>(2023-2026)      | 1   |
| 43. | Efficient resource allocation pattern for cotton farms in Tamil-Nadu Fuzzy goal programming approach. <b>Isabella Agarwal (PI)</b>                                                                                                        | Institute*<br>(2023-2026)      | 5   |
| 44. | ICT dissemination of cotton technologies for production augmentation and knowledge empowerment <b>S. Usha Rani (PI)</b> , M. Sabesh, J. H. Meshram, S.K. Sain                                                                             | Institute<br>(2022-2025)       | 5   |
| 45. | Development of web-based Cotton data query system. <b>M. Sabesh (PI)</b> , Sunil Mahajan, Isabella Agarwal                                                                                                                                | Institute<br>(2021-2026)       | 5   |
| 46. | Effect of monopodial removal practices on the hybrid <i>Bt</i> cotton. <b>Amarpreet Singh (PI)</b>                                                                                                                                        | Institute*<br>(2023-2025)      | 3   |
| 47. | Conservation agriculture practices for cotton-wheat system. <b>Amarpreet Singh (PI)</b>                                                                                                                                                   | Institute<br>(2022 2027)       | 3   |

| SN  | Project title and Investigators                                                                                                                                                                                                                                                                         | Duration                             | EFC      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|
|     | <b>Crop Protection (25)</b>                                                                                                                                                                                                                                                                             |                                      |          |
| 48. | Deployment of AI based Pheromone trap for real-time monitoring of cotton pink bollworm in Punjab. <b>Y. G. Prasad (PL)</b> , <b>Rameash, K. (PI)</b> , Rishi Kumar, Amarpreet Singh, Satnam Singh (PAU), Jasjinder Kaur (PAU)                                                                           | <b>MoA&amp;FW</b><br>(2024-2025)     | <b>2</b> |
| 49. | Cotton Mission: Prospecting of novel <i>Bt</i> toxins and bio-efficacy of newer events for bollworms management in cotton. <b>Y. G. Prasad (PL)</b> , <b>G.T. Behere (PI)</b> , Vivek Shah, Joy Das, K. P. Raghavendra<br>(ICAR-CICR in collaboration with ICAR-NIPB, New Delhi and CSIR-NBRI, Lucknow) | <b>Collaborative</b><br>(2024-2026)  | <b>2</b> |
| 50. | Crop pest surveillance and advisory project (CROPSAP) in Maharashtra. <b>V. S. Nagrare (PI)</b> , Babasaheb B Fand                                                                                                                                                                                      | <b>CROPSAP</b><br>(From 2010)        | <b>2</b> |
| 51. | Insecticide Resistance Management (IRM): Dissemination of Pink bollworm Management Strategies. <b>V.S. Nagrare (PI)</b> , Rachna Pande, Shivaji H. Thube, Neelkanth S. Hiremani, S.P. Gawande, B.B. Fand, D.T. Nagrale, K. Rameash, Rishi Kumar, S.K. Sain, J.H. Meshram, K. Shankar Ganesh             | <b>IRM-DAC</b><br>(From 2018)        | <b>2</b> |
| 52. | Neonicotinoid and pyridinecarboxamide insecticides resistance monitoring in cotton Jassid, <i>Amrasca biguttula biguttula</i> (Ishida). <b>V.S. Nagrare (PI)</b> , Rishi Kumar, K. Shankarganesh, Joy Das                                                                                               | Institute*<br>(2023-2026)            | <b>2</b> |
| 53. | Identification of host cues from cotton ( <i>Gossypium hirsutum</i> ) to elicit behaviour of female pink bollworm ( <i>Pectinophora gossypiella</i> ). <b>Rachna Pande (PI)</b> , Pooja Verma                                                                                                           | Institute<br>(2022-2025)             | <b>2</b> |
| 54. | Development and validation of Cotton - Microclimate and Insect Monitoring System (C-MIMS) based on 5G enabled AI powered wireless sensors and imaging tools. <b>Babasaheb B Fand (PI)</b> , Shailesh Gawande, Rameash K., Rishi Kumar                                                                   | Institute*<br>(2024-2027)            | <b>2</b> |
| 55. | Monitoring insecticide resistance in American bollworm, <i>Helicoverpa armigera</i> (Hubner) populations from cotton growing regions of Maharashtra and Gujarat. <b>Vivek Shah (PI)</b> , Rachna Pande                                                                                                  | Institute<br>(2021-2026)             | <b>2</b> |
| 56. | Evaluation of toxicity of newer insecticides against pink bollworm, <i>Pectinophora gossypiella</i> (Saunders). <b>Vivek Shah (PI)</b> , Babasaheb Fand, G. T. Behere                                                                                                                                   | <i>Ad hoc</i><br>(2024-25)           | <b>2</b> |
| 57. | Investigations on host plant resistance mechanisms in cotton genotypes against thrips. <b>Shivaji Thube</b> , Pooja Verma, Rachna Pande                                                                                                                                                                 | Institute<br>(2022-2025)             | <b>2</b> |
| 58. | Development of EPF ( <i>Beauveria bassiana</i> and <i>Metarhizium anisopliae</i> ) & EPN based bio-formulation for sustainable management of pink bollworm and sucking pest complex in cotton. <b>Shivaji Thube (PI)</b> , G. T. Behere, Gulsar Banu                                                    | Institute<br>(2022-2025)             | <b>2</b> |
| 59. | Studies on target leaf spot of cotton caused by <i>Corynespora cassiicola</i> . <b>S.P. Gawande (PI)</b> , Babasaheb B Fand, Rakesh Kumar, S.K. Sain                                                                                                                                                    | Institute<br>(2020-2025)             | <b>2</b> |
| 60. | Dynamics of boll rot disease complex of upland cotton in India: Basics to integrated management approaches. <b>D. T. Nagrale (PI)</b> , S. P. Gawande, B. B. Fand, N.S. Hiremani                                                                                                                        | <b>CSR-Rasi Seeds</b><br>(2024-2027) | <b>2</b> |
| 61. | Studies on grey mildew disease of cotton caused by <i>Ramularia areola</i> . <b>Neelkanth Hiremani (PI)</b> , P. Valarmathi                                                                                                                                                                             | Institute<br>(2020-2025)             | <b>2</b> |
| 62. | Development of AI enabled pheromone trap for lepidopteran pests and multi-fin glue trap for sucking pests on cotton. <b>K. Rameash (PI)</b> , M. Sabesh                                                                                                                                                 | Institute<br>(2022-2025)             | <b>2</b> |

| SN  | Project title and Investigators                                                                                                                                                                                                                                                            | Duration                          | EFC      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|
| 63. | Biology and holistic management strategies for emerging pest Tea mosquito Bug ( <i>Helopeltis</i> ) in Cotton. <b>M. Amutha (PI)</b>                                                                                                                                                       | Institute* (2020-2025)            | <b>2</b> |
| 64. | Development of semiochemical based attractants for sustainable management of cotton stem weevil <i>Pempherulus affinis</i> (Faust) Curculionidae: Coleoptera). <b>Shankar Ganesh (PI)</b>                                                                                                  | <b>DST-SERB</b> (2022-2025)       | <b>2</b> |
| 65. | Exploration of native Bt isolate derived novel crystal toxin genes for development of transgenic cotton against cotton stem weevil <i>Pempherulus affinis</i> (Faust) Curculionidae: Coleoptera). <b>K. Shankar Ganesh (PI)</b> , A.H. Prakash, Joy Das, B. Singaravelu (SBI, Coimbatore), | Institute* (2024-2029)            | <b>2</b> |
| 66. | Survey, molecular characterization, vector transmission and exploiting host plant resistance for tobacco streak virus (TSV) in cotton. <b>A. Sampath Kumar (PI)</b> , P. Valarmathi, S. P. Gawande, Shivaji Thube, Sivaramakrishna (RARS-Nandyal)                                          | Institute* (2023-2026)            | <b>2</b> |
| 67. | Studies on rust disease of cotton caused by <i>Phakopsora gossypii</i> and Cotton Necrosis disease caused by TSV, its management. <b>P. Valarmathi (PI)</b>                                                                                                                                | Institute (2021-2024)             | <b>2</b> |
| 68. | Studies on plant parasitic nematodes of cotton. <b>J. Gulsar Banu (PI)</b>                                                                                                                                                                                                                 | Institute (2020-2025)             | <b>2</b> |
| 69. | Development of biocontrol consortia with multifaceted fungi for the management of important pests and nematodes of cotton. <b>Gulsar Banu (PI)</b> , Shivaji Thube                                                                                                                         | Institute (2020-2025)             | <b>2</b> |
| 70. | Thermal stress induced effect on insecticide susceptibility and fitness traits in whitefly, <i>Bemisia tabaci</i> , a serious pest of worldwide concern. <b>Rishi Kumar (PI)</b> , Debashis Paul, Babasaheb Fand                                                                           | <b>DST-SERB</b> (2022-2025)       | <b>2</b> |
| 71. | Season-long monitoring & management of pink bollworm in cotton crop in north zone. <b>Rishi Kumar (PI)</b> , Anil Kumar, Jasjinder Kaur, Ranvir Singh, Umesh Kumar, Roop Singh Meena                                                                                                       | <b>CSR-Rasi Seeds</b> (2024-2027) | <b>2</b> |
| 72. | Collection, characterization and evaluation of beneficial fungal microorganisms from North, Central and South Cotton growing zones. <b>S.K. Sain (PI)</b> , Shailesh P. Gawande, P. Valarmathi                                                                                             | Institute (2020-2025)             | <b>2</b> |

### Special Project on Cotton (2024-25)

Ministry of Agriculture & Farmers Welfare, Govt. of India and Ministry of Textiles jointly launched a special project on cotton 'Targeting technologies to agro-ecological zones- large scale demonstrations of best practices to enhance cotton productivity' under National Food Security Mission (NFSM) for implementation during 2024-25 kharif season with an outlay of 4045.13 lakhs. The project was implemented by the ICAR-Central Institute for Cotton Research (CICR), Nagpur in Public-Private Partnership (PPP) mode in the identified clusters adopting a value chain approach. The holistic plan is being implemented in collaboration and partnership with Confederation of Textile Industry (CITI), South India Mills Association (SIMA), Federation of Seed Industry of India (FSII), and National Seed Association of India (NSAI). Field extension support for technology dissemination and farmers' training on best practices is

extended by 48 Krishi Vigyan Kendras (KVKs) of three Agricultural Technology Research Institutes (ATARIs at Pune, Hyderabad and Bengaluru), CITI, and SIMA cotton development and research association. CICR is providing technical backstopping and knowledge support on best practices for increasing productivity.

The Special Project expects scaling up three cotton technologies and has been extended in 2024-25 for implementation in 65 districts of 8 states covering an area of 14740 ha involving 17251 farmers. The farmer beneficiary validation was performed by the officials of the state department of agriculture.

Farmers adopting High-density planting system (HDPS) technology have used three times higher seed rate of 6 seed packets per acre against the current practice of 2 packets/acre to have a high-density plant stand of 74,000 plants/ ha. The technology targets deployment of a suitable compact seed variety in shallow soil areas



along with need-based canopy management techniques. HDPS field demonstrations in 5,777.12 ha areas involving 5,664 farmers were conducted in 40 districts across the states of Maharashtra, Telangana, Gujarat, Andhra Pradesh, Madhya Pradesh Tamil Nadu, and Karnataka. The target is nearly double the current productivity level. The average yield in the HDPS demonstrated plot was 11.46 q/acre over average yield of 8.19 q/acre in neighbouring conventional plots, resulting in an increase of 39.81% over Farmers Practices.

Farmers adopting Closer planting technology used two times higher seed rate of 4 seed packets per acre to have a medium-density plant stand of 37000 plants/ha. The technology targets medium-soil areas along with need-based canopy and pest management techniques. Demonstrations in 7,018.15 ha areas involving 8,937 farmers were conducted in 57 districts across the states

of Gujarat, Rajasthan, Madhya Pradesh, Maharashtra, Telangana, Andhra Pradesh, Tamil Nadu, and Karnataka. The average yield in the CS demonstrated plot was 10.91 q/acre over average yield of 8.24 q/acre in neighbouring conventional plots, resulting in an increase of 32.45 % over Farmers Practices.

In order to boost the production of ELS cotton, demonstrations were conducted in 9 districts of Rajasthan, Madhya Pradesh, and Tamil Nadu in over a 1945.2 ha area involving more than 2650 farmers. The average yield in the ELS demonstrated plot was 8.04 q/acre over the average yield of 6.76 q/acre in neighbouring conventional plots, resulting in an increase of 18.91 % over Farmers Practices.

During 2024-25, 295 farmers' trainings, 164 Field days, 47 workshops, and 40 Kisan Melas outreach activities were organized by KVKS, CITI and SIMA.

### Impact of Special Project on Cotton- Scalable technologies for targeted agro-ecological zones

| S. No. | Scalable technology                                                                                                 | Current (Kg lint/ha) | Target (kg lint/ha) | Achieved yield (kg lint/ha) |
|--------|---------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------------------|
| 1.     | High Density Planting System (HDPS) in low productivity areas under rainfed cotton ecosystem with canopy management | 350                  | 750                 | 945.45                      |
| 2.     | Closer spacing 90 x 30 cm in medium deep soils with canopy management                                               | 600                  | 1000                | 900.08                      |
| 3.     | Production technology for ELS cotton in niche areas under irrigated/rainfed farming situations                      | 500                  | 750                 | 663.30                      |

### Technology interventions Summary – target vs. achievement- 2024-25

| Interventions                               | Target (ha)  | Implemented (ha) | Total production (q) | Total lint production (q) |
|---------------------------------------------|--------------|------------------|----------------------|---------------------------|
| HDPS at 90 x 15 cm in shallow soils         | 6202         | 5777.12          | 165514.49            | 54619.78                  |
| Closer spacing 90 x 30 cm in medium soils   | 7339         | 7018.15          | 201070.00            | 66353.10                  |
| Production technology for Extra Long Staple | 2000         | 1945.2           | 39098.52             | 12902.51                  |
| <b>Grand Total</b>                          | <b>15541</b> | <b>14740.47</b>  | <b>405683.01</b>     | <b>133875.39</b>          |

### Conclusion

Concerted efforts under the Project to promote HDPS among cotton farmers, especially in rainfed regions, to increase cotton yield and, thereby, the income and livelihood of the farmers yielded positive results. Although, HDPS has increased the cost of cultivation by around Rs.4,000/acre due to increased seed rate and harvesting labour cost, farmers realized an approximately Rs.10,500 hike in their net income/acre over the conventional cotton cultivation. The yield distribution has shifted from a lower range of 7.48 to 9.2 q/acre to a higher range of 10.40 to 12.24 q/acre. Overall, HDPS increased the rainfed cotton yield by 39.81% compared to conventional cotton cultivation in 2024-25. For the year 2023-24, at the disaggregated level, 34% of farmers realized 30 - 60 % increased yield

and another 38% have realized 20 to 30% hike in yield. Higher B:C ratio of >2.0 was achieved under HDPS and Closer planting compared to 1.6 in conventional system of wider spacing.

A publication on the success stories of farmers was published by the Directorate of Cotton Development (DCD), Nagpur.



## 10.3:Consultancy, Patents, Commercialization of Technology

### 10.3.1 Contract Research / Revenue generation / Commercialization of Technology Contract Research Project

| S.No. | Title of the Project                                                                                        | Name of Industry Partner            | Year       | Total Amount of the Project excluding GST |
|-------|-------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|-------------------------------------------|
| 1     | Evaluation of Evonik product with Emamectin benzoate 5% SG to manage population of pink bollworm in cotton. | M/s. Evonik India Pvt. Ltd., Mumbai | 12.09.2024 | Rs. 20.98926 Lakh                         |

#### Details of Consultancy Research Project

| S.No. | Title of the Project                                                                                                                                                                                  | Name of Industry Partner                        | Year       | Total Amount of the Project excluding GST |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|-------------------------------------------|
| 1.    | Capacity building of making cotton production more sustainable.                                                                                                                                       | Better Cotton, New Delhi                        | 05.01.2024 | No fees                                   |
| 2.    | Cosmic Ray Soil Moisture Instrument for Validation of Model Computed Soil Moisture under National Hydrology Project (NHP).                                                                            | National Remote Sensing Centre, Hyderabad       | 05.03.2024 | 13.41 Lakh                                |
| 3.    | Explore innovative solutions at the intersection of Artificial Intelligence- Embedded Systems (AI-Embedded) and Smart-Agriculture and skill developments.                                             | NIELIT, Aurangabad                              | 30.04.2024 | No fees                                   |
| 4.    | State the intentions of the parties in undertaking collaboration in and to innovate new and improved techniques for cotton cultivation, undertake research and development                            | Heartfulness Institute, Telangana               | 30.04.2024 | No fees                                   |
| 5.    | Technical backstopping and help in establishing sustainable organic cotton production model in tribal villages such as Dahegaon, Manoli, Kumbhari, Sasani, Tiwasala Tehsil of Ghatanji Yavatmal Dist. | Cottonguru MahaFPC Limited, Mumbai.             | 31.01.2024 | No fees                                   |
| 6.    | Research, capacity building and demonstrations of technologies in Comilla Cotton.                                                                                                                     | Central Agricultural University Imphal, Manipur | 29.08.2024 | No fees                                   |

#### Commercialization of Technology

| Name of the Technology                                                                                                                                                | Name of the Industry Partner              | Amount of Licensing Fee (Rs. in lakhs) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Multiplication and commercialization of Bt cotton variety (ICAR-CICR 25 Bt)" developed by ICAR-CICR.                                                                  | M/s.Nirupama Seeds Pvt Ltd, Hyderabad     | 2                                      |
| Continuation of MoU with Dhanalaxmi Seeds Pvt Ltd. for taking up seed production and commercialization of Bt cotton variety (ICAR-CICR Bt-23) on (Addendum) 8/7/2021. | M/s.Dhanalaxmi Seeds Pvt Ltd. Karnool, AP | 2                                      |

#### 10.3.2 Patents

| Sr. No. | Patents                                                                | Patents No./ status | Year of grant |
|---------|------------------------------------------------------------------------|---------------------|---------------|
| 1.      | Bacterial-based volatiles composition as aphid attractant              | 553413              | 2024          |
| 2.      | Bacterial-based volatiles composition as thrip attractant              | 554409              | 2024          |
| 3.      | Bacterial-based volatiles composition as whitefly attractant           | 541777              | 2024          |
| 4.      | Bacterial-based volatiles composition as beneficial insects attractant | 546146              | 2024          |
| 5.      | Bacterial-based volatiles composition as jassid attractant             | Filed               | -             |
| 6.      | Bacterial-based volatiles composition as whitefly attractant           | PCT Filed           | -             |



| Sr. No. | Patents                                                                             | Patents No./ status | Year of grant |
|---------|-------------------------------------------------------------------------------------|---------------------|---------------|
| 7.      | Bacterial-based volatiles composition as jassid attractant                          | PCT Filed           | -             |
| 8.      | A system for attracting pink bollworms, trapping and reporting and a method Thereof | Filed               | -             |
| 9.      | Semi-synthetic diet for cotton stem weevil                                          | Filed               | -             |

#### 10.4: Quinquennial Review Team Meeting

The Quinquennial Review Team (QRT) to review the work done by ICAR-Central Institute for Cotton Research, Nagpur and All India Coordinated Research Project on Cotton for the period 2018 to 2023 was constituted under the Chairmanship of Dr. B. Venkateswarlu, Former Vice Chancellor, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani by the Indian Council of Agricultural Research vide Office Order No: F.No.CS.5/2/2006-IA.III (e-24484) dated 12th June 2023. The other members of the QRT team were Dr. SS. Patil, Former Director Research, UAS Dharwad and Emeritus Scientist Dept. of Genetic & Plant Breeding UAS, Dharwad; Dr. SR. Bhat, Former Principal Scientist, NIPB, IARI, New Delhi; Dr. NT. Yaduraju, Former Director, ICAR-DWR, Jabalpur & Former National Coordinator, NAIP, ICAR, New Delhi; Dr. Chandish R. Ballal, Former Director,

ICAR, NBAIR, Bengaluru; Dr. D. Monga, Former Head, ICAR-CICR, RS, Sirsa; Dr. A.J. Shaikh, Former Director, ICAR-CIRCOT, Mumbai, and Dr. K. Velmourougane, Principal Scientist, Crop Production Division, ICAR-CICR, Nagpur served as the Member Secretary.

The QRT conducted total 5 meetings including visits to 2 Regional Stations of ICAR-CICR (Coimbatore and Sirsa) and AICRP (Cotton) centres. The QRT interacted with the Director, Head of Divisions and staff, Individual Scientists of the Institute and Collaborating Centres, Heads of the Finance and Administration in the Institute, farmers, industry people and other cotton stakeholders, including representatives from the cotton trade and textile industry. The QRT also interacted with the Chairman, RAC, and IMC and finalized the report along with the QRT recommendations of the ICAR-CICR and AICRP on Cotton.

**QRT meetings held at various locations of Institute and the AICRP during the period are as follows-.**

| Date               | Venue                              | Agenda                                                                | Participating members                                                                                                                                                                                         |
|--------------------|------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26th October, 2023 | DDG (CS) Office<br>ICAR, New Delhi | Discuss the review process and other important issues to be reviewed  | Dr. B. Venkateswarlu<br>Dr. Y.G. Prasad<br>Dr. K. Velmourougane                                                                                                                                               |
| 27th October, 2023 | PAU, Bathinda                      | Review of work done at Bathinda and Faridkot centres of PAU           | Dr. B. Venkateswarlu<br>Dr. Shreekanth S. Patil<br>Dr. S. R. Bhat<br>Dr. Chandish R. Ballal<br>Dr. D. Monga                                                                                                   |
|                    | ICAR-CICR, RS, Sirsa               | Review of work done at ICAR-CICR Regional Station, Sirsa              | Dr. A. J. Shaikh<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                                                                                                                                   |
| 28th October, 2023 | CCSHAU, Hisar                      | Review of work done at CCSHAU, Hisar and SKRAU, Sriganganagar         | Dr. B. Venkateswarlu<br>Dr. Shreekanth S. Patil<br>Dr. S. R. Bhat<br>Dr. Chandish R. Ballal<br>Dr. D. Monga<br>Dr. A. J. Shaikh<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                    |
| 28th November 2023 | NAU, Surat                         | Review of work done at NAU, Surat, JAU, Junagarh, and MPUAT, Banswara | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekanth S. Patil<br>Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Y.G. Prasad, Director<br>Dr. G.T. Behere<br>Dr. S. Manickam<br>Dr. K. Velmourougane |
| 6th January 2024   | ICAR-CICR, RS, Coimbatore          | Review of work done at ICAR-CICR, RS, Coimbatore                      | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekanth S. Patil                                                                                                                                          |



| Date               | Venue                     | Agenda                                                                                                                                                                                                                                                       | Participating members                                                                                                                                                                                                                                                                                                                                           |
|--------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                           | Interactive meeting with cotton stakeholders including representatives from cotton trade and textile industry                                                                                                                                                | Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Dilip Monga<br>Dr. S.R. Bhat<br>Dr. Y.G. Prasad<br>Dr. G.T. Behere<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                                                                                                                                                                                 |
| 7th January 2024   | ICAR-CICR, RS, Coimbatore | Review of work done at UAS, Dharwad, UAS, Raichur, UAS, Chamaraja Nagar ANGRAU, Guntur, ANGRAU, Nandyal PJTSAU, Warangal, PJTSAU, Adilabad, TNAU, Coimbatore, and TNAU, Srivilliputhur centres of AICRP on cotton                                            | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekant S. Patil<br>Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Dilip Monga<br>Dr. S.R. Bhat<br>Dr. Y.G. Prasad<br>Dr. G.T. Behere<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                                                                                                          |
| 9th February 2024  | ICAR-CICR, Nagpur         | Presentation of ATR of last QRT report. The approved ATR is given in Annexure III<br><br>Review of work done at ICAR-CICR, Nagpur<br><br>Interactive meeting with cotton stakeholders including representatives from cotton seed, trade and textile industry | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekant S. Patil<br>Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Dilip Monga<br>Dr. S. R. Bhat (Online)<br>Dr. Y.G. Prasad<br>Dr. G.T. Behere<br>Dr. V.N. Waghmare<br>Dr. A.S. Tayade<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                                                        |
| 10th February 2024 |                           | Review of work done at RVSKKV, Khandwa, Dr PDKV, Akola, VNMKV, Nanded, MPKV, Rahuri, CSAUAT, Kanpur, and OUAT, Bhawanipatna centres of AICRP on cotton                                                                                                       | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekant S. Patil<br>Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Dilip Monga<br>Dr. S. R. Bhat<br>Dr. G.T. Behere<br>Dr. V.N. Waghmare<br>Dr. A.S. Tayade<br>Dr. S. Manickam<br>Dr. K. Velmourougane                                                                                                    |
| 10th April 2024    | ICAR-CICR, Nagpur         | Finalization of Recommendations                                                                                                                                                                                                                              | Dr. B. Venkateswarlu<br>Dr. N.T. Yaduraju<br>Dr. Shreekant S. Patil<br>Dr. Chandish R. Ballal<br>Dr. A. J. Shaikh<br>Dr. Dilip Monga<br>Dr. S. R. Bhat<br>Dr. P.K. Chakrabarty, Chairman, RAC<br>Shri. Srirang Devba Laad, Member, IMC<br>Dr. Y.G. Prasad<br>Dr. G.T. Behere<br>Dr. V.N. Waghmare<br>Dr. A.S. Tayade<br>Dr. S. Manickam<br>Dr. K. Velmourougane |



## 10.5: Other Important Meetings/ Workshops/Events

### 10.5.1: Meetings

#### 57th Institute Management Committee Meeting

The 57<sup>th</sup> Institute Management Committee Meeting was held on 4th January, 2024, under the Chairmanship of Dr. Y.G. Prasad, Director, ICAR-CICR, Nagpur. The meeting was attended by Dr. D.K. Yadava, ADG (CC), New Delhi; Dr. G. Ravindra Chary, PC, CRIDA, Hyderabad; Dr. S. Manickam, PS, Regional Station, Coimbatore; Dr. S.K. Ray, I/c Head, NBSS & LUP Regional Station, Kolkata; Dr. R.N. Sahoo, PS, Division of Agriculture Physics, IARI, New Delhi; Shri Srirang Devba Laad, and Shri H. Murthy (Progressive farmers - nominated by Council).



#### Cotton Germplasm Field Day

ICAR-CICR, Nagpur organized a "Cotton Germplasm Field Day" on 5th January, 2024. Dr. C.D. Mayee, Ex-Chairman, ASRB, New Delhi graced the occasion as Chief Guest and informed about the importance of



Public-Private Partnership in germplasm exchange needed for diversification of Genetic base of Cotton. Dr. Y.G. Prasad, Director, ICAR-CICR, briefed about the cotton Germplasm Field Day for Public-Private Partnership germplasm collection, their utilisation in diversification of genetic base for developing hybrids/varieties to increase the productivity of cotton in India. Dr. V.N. Waghmare, Head, Division of Crop Improvement, emphasized and urged breeders for providing feedback on germplasm utilization. The objective of the programme was to showcase the diversity in the cotton gene-pool and to facilitate Public-Private Partnership for cotton germplasm exchange, as

presented by Dr. Vinita Gotmare, Principal Scientist & Germplasm Curator. Approximately 56 breeders representing 37 State Agricultural Universities, 19 private seed companies and scientists from the regional stations of CICR Coimbatore and Sirsa participated in this event. A field visit was organized for all participants to select the desired germplasm accessions for utilization in their breeding programme.

#### Brainstorming Workshop on Biotech interventions in Cotton:

ICAR- CICR, Nagpur in association with Biotech Consortium India Limited (BCIL), with support from the Federation of Seed Industry of India (FSII) organized a brainstorming workshop on 'Biotech Interventions in Cotton Improvement: Opportunities and the Challenges' on 4th April, 2024. Dr. Paresh Verma, Executive Director-Bioseeds Division, DCM Shriram Limited, Hyderabad; Dr. Vibha Ahuja, Chief General Manager, Biotech Consortium India Limited; Dr CD Mayee, Former Chairman, ASRB and Former Director, ICAR-CICR, Nagpur; and Dr Y.G. Prasad, Director, ICAR-CICR, Nagpur were the experts in the programme.



#### Interactive meeting at ICAR-CICR, RS, Coimbatore

An interactive meeting with Hon'ble DDG (Crop Science) Dr. Tilak Raj Sharma, ADG (Seed) Dr. D.K. Yadava, and Director, ICAR-NBSPGR Dr. G. P. Singh at CICR-RS, Coimbatore was held on April 1, 2024. The other dignitaries at the meeting included the Director, ICAR-



SBI, and scientists from NBPGR, New Delhi and CICR, RS, Coimbatore. DDG, along with other guests, visited the recently renovated silver jubilee building block of the institute, followed by a discussion with fellow breeders regarding recently released varieties of cotton.



#### Stakeholder consultation meeting with the seed industry

The ICAR-CICR Nagpur hosted a stakeholder consultation meeting on 4th July 2024 with the seed industry, focusing on research collaboration between public and private sector researchers to address the key challenges in the cotton sector in a mission-mode approach.



Dr. Y.G. Prasad, Director, ICAR-CICR, highlighted the scope and need for collaboration between the public and private sectors in view of the stagnation in cotton productivity in the country for the last several years. He proposed the development of variety product profiles, including the development of compact BG II varieties suitable for HDPS and finding a transgenic technology solution for the management of the dreaded cotton pink bollworm by pooling the strengths of public and private sectors in partnership mode. Dr. C.D. Mayee, Former Chairman, ASRB, chaired the session and urged the industry to come forward with collaborative proposals in the areas of basic and strategic research of national importance. Dr. Prasanta Dash, ADG (Commercial Crops), ICAR briefed about the vision of the Ministry for enhancing cotton productivity. Dr. L.K Gupta, CMD, CCI Mumbai highlighted the growing demand for quality cotton by the textile sector. ICAR-CICR scientists presented the status of research on novel genes, advanced breeding, and germplasm materials available

for sharing with the industry for development. Detailed deliberations were held between the representatives of the seed industry, focusing on the industry perspective and identified five research thrust areas viz., Pink bollworm resistance, development of compact varieties for HDPS, sharing of germplasm, marker assisted breeding for pest and disease tolerance, and defoliant technologies for mechanization of cotton harvesting.

Seed industry stalwarts Dr. M. Ramasami, Chairman, Rasi seeds, Dr. M. Prabhakar Rao, Chairman, Nuziveedu ; Dr Paresh Verma, Executive Director, Bioseed Research India; Dr Ashwin Kashikar, GM (R&D), Ankur seeds; Dr R.S. Mahala, President (Research), Seed Works International; Dr Vipin Dagaonkar, Crystal Croptech, guided the proceedings. Representatives from Mahyco, Ajit seeds, Daftari seeds, Prabhat seeds and members Federation of Seed Industry of India (FSII) and National Seed association of India (NSAI) participated in the meeting. The meeting was also attended by Dr. AL Waghmare, Director, Directorate of Cotton Development and Scientists of CICR. The meeting was coordinated by Dr. Babasaheb Fand, and a vote of thanks was proposed by Dr Raghavendra, Head, PME Cell.



#### Training on Special Cotton Technology

Dr. YG Prasad, Director, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, spearheaded a training session on special cotton technology was organized by ICAR-CICR on 5th July 2024 for the Confederation of Indian Textile Industry - Cotton Development and Research Association (CITI-CDRA). This initiative was part of a special project titled "Targeting Technologies to Agro Ecological Zones – Large-Scale Demonstrations of Best Practices to Enhance Cotton Productivity," funded



by the Ministry of Agriculture & Farmers Welfare and the Ministry of Textiles, Government of India.

The event, held at the institute, aimed to disseminate advanced cotton cultivation practices tailored to different agro-ecological zones. Distinguished guests in attendance included Dr. AL Waghmare, Director, Directorate of Cotton Development (DoCD), and Dr. Wairale, Retired General Manager of Maharashtra Cotton Federation. Their participation underscored the significance of the training and the collaborative efforts of various agricultural and textile bodies in advancing cotton production.



### Special Cotton Project Workshop for Nagpur and Wardha Districts

Under the aegis of special cotton project, ICAR-CICR and CITI-CDRA combinedly organized a workshop on July 27, 2024, to showcase the best technologies for cotton cultivation tailored to site-specific conditions. The workshop focused on three technologies such as High-density planting system (HDPS) for shallow soils, Closure Spacing (CS) for medium deep soils, and the CICR-Dada Lad technique for heavy deep soils. A total of 160 cotton farmers from Nagpur and Wardha district actively participated in the workshop. To support the adoption of monopodia removal and detopping practices, 40 pruning secateurs were distributed to farmers.

Dr. Y.G. Prasad, Director, CICR, Nagpur, emphasized that these technologies are designed to enhance cotton productivity and sustainability in the region. During kharif 2024, a cluster approach was implemented in 103 villages in these three districts (Yavatmal, Wardha and Nagpur). The large-scale demonstration covered an area of 961 hectare to benefit 1070 farmers. Dr. AL Waghmare, Director, DCD, Nagpur, highlighted the significance of special cotton technology demonstrations in rainfed cotton growing areas and emphasized the potential to revolutionize cotton production. He also noted that the project also facilitates direct benefit transfer (DBT) to farmers.

Dr. AS Tayade, Head, Crop Production elaborated on the specific requirements of the special project, including geo-fencing, crop cutting, and post-harvest shredding. Mr. RJ. Manohare, DSAO, Nagpur outlined the initiatives

of agriculture department schemes, such as crop insurance, soil testing, and drip irrigation in cotton farming and discussed the opportunities of lint-based cotton marketing to enhance income of cotton farmers.

Mr. GH Wairale, Project Coordinator, CITI-CDRA, highlighted that these large-scale demonstrations are being promoted through a collaborative public-private partnership (PPP) model. Dr. A. Manikandan, Senior Scientist, Soil Science emphasized the timeliness of interventions for a positive impact on cotton productivity. The inaugural session was moderated by Mr. Jagdish Niralwar, Officer, CITI-CDRA.

During the technical session, a panel of experts comprising Dr GI Ramkrushna, Dr. A. Manikandan, Dr. Rachana Pandey, Dr. Shailesh Gawande, and Dr. Rajkumar Ramteke delivered presentations on technologies integrated crop, nutrient, pest, and disease management with practical guidance. The farmers visited various technology demonstrations and field experiments at the CICR Research farm.



### Workshop cum Focus Group Discussion on "Best Management Practices (BMPs) for Sustainable Cotton Production in Maharashtra

ICAR-CICR, Nagpur organized a Workshop cum Focus Group Discussion on "Best Management Practices (BMPs) for sustainable cotton production in Maharashtra" on 24th October, 2024. The salient



findings of the "Landscape Diagnostic Survey (LDS) of 3000 farmers on cotton production practices in Maharashtra" funded by the Rajiv Gandhi Science and Technology Commission (RGSTC), Mumbai, were discussed. KVK experts, officials from the Agriculture

department, industry, and farmers from 10 districts provided feedback on the BMPs for the preparation of district plans.

### 10.5.2: Events

**ICAR-CICR celebrates the 75th Republic Day** on January 26, 2024, marking the day on which the Constitution came into effect after the country gained independence in 1947.



### International Women's Day

ICAR-CICR, Nagpur celebrated Women's Day program on March 8, 2024 under the Chairmanship of Director, Dr. Y. G. Prasad, Director, ICAR-CICR, Nagpur. Dr. Nandini (Gokte) Narkhedkar, Former Principal Scientist, ICAR-CICR, was the Chief Guest of the occasion. The dias was shared by Dr. Vinita Gotmare, Principal Scientist. All the women staff of the institute including Scientists, Technical staff, administrative staff, SRF, JRF, Young Professionals, Students, and supporting staff, have witnessed the program, which includes recreational activities and fun games. The women technical staff, including Mrs. Mithila Meshram and Mrs. Chaitali Rode have arranged the overall program theme and activities for successful completion of program. On this occasion, the Director rewarded the young scientists and other staff members for their noble contributions.



### 48th Foundation Day of ICAR-CICR

ICAR-CICR under the leadership of Dr. Y.G. Prasad, Director celebrated its 48th Foundation Day on 1 April 2024 with bliss and enthusiasm. Padma Bhushan Dr. RS

Paroda, Former Director General ICAR and Chairman TAAS graced the occasion as Chief Guest and delivered a foundation day lecture on "Cotton – A New Way Forward". Dr. CD Mayee, Former Chairman (ASRB) presided over the function. Prof. Indra Mani, Vice-Chancellor, VNMKV, Parbhani; Dr NG Patil, Director, ICAR-NBSS&LUP; Dr DK Ghosh, Director, ICAR-CCRI Nagpur; Dr. Ashutosh A Murkute, Director, MGIRI, Wardha; Dr. AL Waghmare, Director, DCD, 02 Nagpur; Dr. SK Shukla, Director, ICAR-CIRCOT, Mumbai were the Guests of Honour. The program was conducted in hybrid mode where staff from two regional stations (Sirsa and Coimbatore) and retired staff of the CICR Regional stations joined through online mode. To provide farmers with detailed information in an accessible language, the institute has crafted special publications on the occasion of the foundation day, which include the following: Success stories under special project on cotton, HDPS for cotton (English and Hindi) and KAPASIKA- 2023.



### 10th International Yoga Day Celebration



In order to commemorate the International Yoga Day 2024 on 21st June with the theme "yoga for self and society". ICAR-CICR Nagpur celebrated this yoga day at the institute with the Yoga Trainer Mr. G V. Deogirkar Farm superintendent, ICAR-CICR and the guest of honour, Dr Nupur Angal, physiotherapist Nagpur in the presence of Director ICAR-CICR, Dr YG Prasad and Dr. Mahajan-Vice President SRC. The event was organized by recreation club, ICAR- CICR Nagpur.



#### 96th ICAR Foundation and Technology Day July 15-16,2024



#### Celebrating Independence Day at ICAR-CICR, Nagpur

The Independence Day flag hoisting ceremony was held at the ICAR-Central Institute for Cotton Research (CICR), Nagpur, on August 15, 2024. The event took place at 8:30 AM, with Dr. Y.G. Prasad, Director of ICAR-CICR, presiding over the flag hoisting. The ceremony was attended by all staff members who gathered to celebrate the occasion.



#### 19th "Parthenium Awareness Week" program

The 19th "Parthenium Awareness Week" program was organized on 21st August 2024 near the KVK campus of the institute to raise awareness about the importance of eradicating Parthenium weed, which causes health hazards to animals, humans, and environmental biodiversity, and its role in transmission of TSV disease in cotton. Dr. Y.G. Prasad, Director of ICAR-Central Institute for Cotton Research, along with Heads of Division, scientists, and all staff of ICAR-CICR, Nagpur, participated in the event.



#### Celebrating World Cotton Day at ICAR-CICR, Nagpur



#### Kisan Diwas

ICAR-Central Institute for Cotton Research, Nagpur, celebrated Kisan Diwas on 23rd December 2024 in the institute under the Special Project on Cotton. The programme was inaugurated by Smt. Shubha Thakur, Additional Secretary (Crops & Seeds), Ministry of Agriculture and Farmers Welfare, Government of India. Dr. C.D. Mayee, Former Chairman, ASRB, ICAR. Dr. A.L. Waghmare, Dr. Govind Wairale, and Dr. Arjun Tayde, attended the programme along with 75 farmers.





## 10.6: Participation of Scientists in Symposia/ Conference/Seminars/ Webinar

| Name of Scientist                | Title of Seminar/ Webinar/ Conference/Symposia                                                                                                                                          | Seminar/ Webinar/ Conference/ Symposia | Place/Organized by                                                                                                                                                                         | Date and Duration                 |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Dr. Satish Kumar Sain            | National Conference on “Plant Health for Food Security: Threats and Promises”                                                                                                           | Conference                             | ICAR-IISR, Lucknow, Uttar Pradesh                                                                                                                                                          | 01-02-2024 to 03-02-2024 (3 Days) |
| Dr. Satish Kumar Sain            | ISMPP 3rd Asian Congress on Plant Pathology: Plant and Soil Health Management for a Better Tomorrow                                                                                     | Conference                             | SDAU, Sardar krushinagar Gujarat                                                                                                                                                           | 07-02-2024 to 10-02-2024 (4 Days) |
| Dr. A. Manikandan                | National Seminar on Soil Ecosystem Services for Sustainable Agriculture                                                                                                                 | Seminar                                | ICAR-NBSS&LUP, Nagpur                                                                                                                                                                      | 21-02-2024 to 23-02-2024 (3 Days) |
| Dr. Usha Rani                    | 39th Annual Conference of Association for International Agricultural and Extension Education (AIAEE) on “Technology, Pluralism and Inclusiveness in Agriculture, Food, and Environment” | Conference                             | Association for International Agricultural and Extension Education (AIAEE) at University of Guelph, Guelph, Canada                                                                         | 26-04-2023 to 29-04-2023 (4 Days) |
| Dr. Joy Das,<br>Dr. Rakesh Kumar | International Conference on Advancements in Science, Engineering and Management ICASEM 2024                                                                                             | Conference                             | Vidya Vihar Institute of Technology, Purnea, Bihar, India & RSP Conference Hub, Coimbatore                                                                                                 | 30-05-2024 to 31-05-2024 (2 Days) |
| Dr. Joy Das,<br>Dr. Rakesh Kumar | International conference on Emerging Technologies in Agriculture and Allied Sciences                                                                                                    | Conference                             | Society for Agriculture, Allied Sciences and Technology (SAAST), Odisha in association with School of Agriculture, SR University, Warangal and Meadow Agriculture Pvt. Ltd., Uttar Pradesh | 10-08-2024 to 11-08-2024 (2 Days) |
| Dr. K. Sankaranarayanan          | International Conference on Agrovoltaics and Sustainability in Farming                                                                                                                  | Conference                             | TNAU, Coimbatore                                                                                                                                                                           | 19-09-2024 to 20-09-2024 (2 Days) |



| Name of Scientist                                                                                                                                                                                                                                                                                                          | Title of Seminar/ Webinar/ Conference/Symposia                                                                                                  | Seminar/ Webinar/ Conference/ Symposia | Place/Organized by                                                                                                                                                                          | Date and Duration                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Dr. K. Baghyalakshmi, Dr. K. Sankaranarayanan, Dr. A Manivannan, Dr. Amudha J, Dr. P Nalayini, Dr. Gulsar Banu, J, Dr. S Usha Rani, Dr. Amarpreet Singh, Dr. Satish Kumar Sain, Dr. Rishi Kumar                                                                                                                            | WCRC-8 (World Cotton Research Conference-8)                                                                                                     | Conference                             | International Cotton Advisory Committee, Washington DC, USA, at Hotel Intercontinental in Tashkent, Uzbekistan                                                                              | 03-10-2024 to 07-10-2024 (5 Days) |
| Dr. Rakesh Kumar                                                                                                                                                                                                                                                                                                           | National Conference on Frontiers in Science & Technology -2024 (NCFIST- 2024)                                                                   | Conference                             | Mahatma Gandhi College of Science, Gadchandur, in association with Gondwana University, Gadchiroli & UltraTech Cement Ltd., Unit-Manikgarh Cement Works, Gadchandur, Chandrapur             | 05-10-2024 (1 Days)               |
| Dr. Jaya Kumaravaradan R                                                                                                                                                                                                                                                                                                   | 84th Annual Conference of Indian Society of Agricultural Economics (ISAE)                                                                       | Conference                             | PAJANCOA & RI in Karaikal, Puducherry                                                                                                                                                       | 11-11-2024 to 13-11-2024 (3 Days) |
| Dr. Y G Prasad, Dr. V. N. Waghmare, Dr. K. Velmourouga, Dr. K. Baghyalakshmi, Dr. K. Sankaranarayanan, Dr. S. Manickam, Dr. Subhash Chandra, Dr. A Manivannan, Dr. Amudha J, Dr. P Nalayini, Dr. Joy Das, Dr. Sampathkumar A., Dr. Usha Rani, DR K. Shankarganesh, Dr. Rishi Kumar, Dr. Dipak T. Nagrale, Dr. S.P.Gawande, | International conference on Innovative technologies for research and development for sustainable production of cotton, oilseeds and fibre crops | Conference                             | Cotton Research and Development Association (CRDA), CCSHAU, Hisar, Indian Society of Oilseeds Research (ISOR), Hyderabad and ICAR- Indian Institute of Oilseeds Research (IIOR), Hyderabad. | 13-11-2024 to 15-11-2024 (3 Days) |
| Dr. A. Manikandan                                                                                                                                                                                                                                                                                                          | Global Soils Conference                                                                                                                         | Conference                             | NAAS Complex, New Delhi                                                                                                                                                                     | 19-11-2024 to 22-11-2024 (4 Days) |
| Dr K Rameash, Dr Sampathkumar A                                                                                                                                                                                                                                                                                            | International Conference on Unleashing the Power of Seed and Crop Health Innovations for a Food Secure World                                    | Conference                             | TNAU, Coimbatore and Shastri Indo-Canadian Institute, New Delhi.                                                                                                                            | 21-11-2024 to 22-11-2024 (2 Days) |



## Distinguished Visitors

### Visit of the Hon'ble Secretary DARE and Director General, ICAR, New Delhi to ICAR-CICR, RS, Coimbatore on 11.07.2024

Hon'ble Dr. Himanshu Pathak, Secretary DARE and Director General, ICAR, New Delhi Visited at ICAR-CICR, RS, Coimbatore on 11.07.2024 and addressed to staff. Dr. Himanshu Pathak, DG, ICAR, New Delhi visited the exhibition stall and interacted with scientists about the various technologies and varieties displayed in the stall, such as Drones, HDPS, protection technologies and latest released varieties viz., Nano, Suraksha, ELS varieties viz., CICR B cotton 55, 45 and 37. Later, he addressed the staff gathering at seminar hall of the station. He appreciated the technologies and varieties released by the institute for the cotton farming community.



In the Special address, DG informed that cotton crop has been highly discussed in almost all important meetings at the ICAR. The recently joined Minister of Textiles personally visited him to discuss issues related to the crop, along with other secretaries and Director, CICR, Nagpur. A few concerns about the crop are - the total production and yields remains stagnant. Although we have many success stories; it seems we may have not sustain in future. The varieties that are coming up are also from private firms such as Monsanto etc.,. The main problem to be addressed is the stagnation of total production and productivity and their reduction in recent years. As such, cotton crop is difficult to grow under external drought and stresses, makes the yield reduction.

To address these difficulties in cotton production, two or

three kinds of interventions ave been putforth. 1. HDPS in order to boost the production in which the station scientists are being involved. 2. Development of resistant varieties (resistant lines and those in pipelines). He emphasized the Coimbatore scientists to collaborate with Nagpur scientists to come up with good action plan for 3 to 4 years to address cotton scenario to overcome low production so as to reverse back again. He added that the cotton sector is our concern. We should consider how best to handle and focus on our contributions. He congratulated the station for being handling the project of 40 crores, and he emphasized the need of such kind projects, especially in collaboration with textiles industries.

He informed the gathering that council support in release of herbicide-tolerant cotton variety as it is in the Ministry of Environment, Forest and Climate Change (MoEFCC) for GAC meeting and added that the Head of CICR, being a member, will update the proceedings. He shared his happiness that the centre was good, large enough with good work and strength. He emphasized the importance of cotton as prior commodity for Govt. of India. The council will extend the support to the station in all aspects to ensure its smooth operation.

### Visit of Shri. Giriraj Singh Ji, Hon'ble Union Minister of Textiles, Gol, New on 25th September 2024

Shri. Giriraj Singh Ji, Hon'ble Union Minister of Textiles, Gol, New Delhi made his maiden visit to Nagpur based ICAR-Central Institute for Cotton Research on 25th September 2024 and chaired the interactive meet held on HDPS. He informed that Saturation model Project will be initiated at Akola by Ministry of Textiles, Gol, New Delhi with the support of ICAR-CICR, Nagpur. He visited field experiments and interacted with scientists, students and stake holders in cotton farming.



## Australian Consul-General, Mumbai, visited ICAR-CICR Nagpur

On 9th October 2024, The Australian Consul-General (Mumbai), Mr. Paul Murphy visited to the ICAR-Central Institute for Cotton Research (ICAR-CICR) Nagpur. The



visit aimed to foster stronger ties between India and Australia in cotton research, knowledge exchange, and extension. The visit was marked by a series of productive interactions and discussions with the Director, Heads of Divisions, and scientists.



## 10.7: Personnel

### Director

Dr. Y. G. Prasad

### CROP IMPROVEMENT DIVISION

#### Genetics & Plant Breeding

##### Nagpur

Dr. VN Waghmare, Head

Dr. (Mrs.) Vinita Gotmare, Pr. Scientist

Dr. DV Patil, Pr. Scientist (Retired on 30.06.2024)

Dr. Rajkumar Ramteke, Pr. Scientist

Dr. M Saravanan, Sr. Scientist

Dr. RM Phuke, Sr. Scientist

##### Coimbatore

Dr. S Manickam, Pr. Scientist

Dr. Manivannan A, Sr. Scientist

Dr. (Mrs.) K Baghylakshmi, Scientist

##### Sirsa

Dr. SK Verma, Pr. Scientist

Dr. Subhash Chandra, Scientist

### Agri. Biotechnology

##### Nagpur

Dr. G Balasubramani, Pr. Scientist (Retired on 30.06.2024)

Dr. (Mrs.) J Amudha, Pr. Scientist

Dr. KP Raghavendra, Sr. Scientist

Dr. Joy Das, Sr. Scientist

Dr. Rakesh Kumar, Sr. Scientist

### Seed Science & Technology

##### Nagpur

Dr. (Mrs.) V Santhy, Pr. Scientist

Dr. SS Mahajan, Pr. Scientist

Coimbatore

Dr. K Rathinavel, Pr. Scientist (Retired on 30.03.2024)

##### Sirsa

Dr. Debashis Paul, Scientist

### CROP PRODUCTION DIVISION

#### Agronomy

##### Nagpur

Dr. AS Tayade, Head

Dr. Blaise Desouza, Pr. Scientist

Dr. AR Raju, Pr. Scientist (Retired on 29.02.2024)

Dr. Ramkrushna I Gandhiji, Sr. Scientist

##### Coimbatore

Dr. (Mrs.) P Nalayini, Pr. Scientist

Dr. K Sankaranarayanan, Pr. Scientist

Dr. R Raja, Pr. Scientist

##### Sirsa

Dr. Amarpreet Singh, Sr. Scientist

#### Soil Science

##### Nagpur

Dr. A Manikandan, Sr. Scientist

Coimbatore

Dr. (Mrs.) D Kanjana, Sr. Scientist

#### Farm Machinery & Power

##### Nagpur

Er. G Majumdar, Scientist (SG) (Retired on 30.04.2024)

#### Plant Physiology

##### Nagpur

Dr. JH Meshram, Pr. Scientist



**Coimbatore**

Dr. AH Prakash, Head, RS Coimbatore  
Dr. (Mrs.) Annie Sheeba, Sr. Scientist

**Plant Biochemistry**

Dr. (Mrs.) Pooja Verma, Sr. Scientist

**Agricultural Microbiology****Nagpur**

Dr. K Velmourougane, Pr. Scientist

**Agricultural Extension****Coimbatore**

Dr. (Mrs.) Usha Rani, Pr. Scientist

**Agricultural Economics****Nagpur**

Dr. R. Jaya Kumara Varadan, Scientist

**Coimbatore**

Dr. (Mrs.) Isabella Agarwal, Pr. Scientist

**Computer Application in Agriculture****Coimbatore**

Dr. M Sabesh, Pr. Scientist

**CROP PROTECTION DIVISION****Agricultural Entomology****Nagpur**

Dr. GT Behere, Head

Dr. VS Nagrare, Pr. Scientist

Dr. (Mrs.) Rachna Pande, Sr. Scientist

Dr. Babasaheb Fand, Sr. Scientist

Dr. Shivaji Thube, Sr. Scientist

Dr. Shah Vivek Hanskumar, Scientist

**Coimbatore**

Dr. K Rameash, Pr. Scientist

Dr. (Mrs.) M Amutha, Pr. Scientist

Dr. K Shankarganesh, Sr. Scientist

**Sirsa**

Dr. Rishi Kumar, Pr. Scientist (Station I/c w.e.f. 24.03.2023)

**Plant Pathology****Nagpur**

Dr. SP Gawande, Sr. Scientist

Dr. DT Nagrale, Sr. Scientist

Dr. Neelakanth Hiremani, Scientist

**Coimbatore**

Dr. A Sampath Kumar, Sr. Scientist

Dr. P Valarmathi, Sr. Scientist

**Sirsa**

Dr. Satish Kumar Sain, Pr. Scientist

**Nemotology****Nagpur**

Dr. Devindrappa, Scientist (Transferred to ICAR-IIRR, Bengaluru, Relieved on 10.04.2024)

**Coimbatore**

Dr. (Mrs.) J Gulsar Banu, Pr. Scientist

**KRISHI VIGYAN KENDRA****Senior Scientist-cum-Head, KVK**

Dr Raksh Kumar Singh, (Transferred to KVK, Lakhimpur Kheri under ICAR-IISR, Lucknow on 18.03.2024)

Dr. Ramkrishna GI, Senior Scientist & Incharge KVK

**Technical Staff****T- 6 of Category III**

Sh. SS Patil, T-9 SMS (Retired on 30.06.2024)

Dr. UV Galkate, T-9 SMS

Mrs. Sunita N Chauhan, T-9 SMS

Dr. UA Nandankar, T-9, CTO (Retired on 29.02.2024)

Dr. Deepa Lal, T-6 SMS

**T-4 of Category II**

Dr. PB Deulkar, T (7-8)

Dr. HB Kumbhalkar, T-6, Sr. Tech. Officer

Mrs. Vandana Satish, T-6, Sr. Tech. Officer

**T-1 of Category I**

Sh. AK Sherkar, T-5 Driver

Sh. Naresh Raut T-3 Driver

Skilled Support Staff

Sh. Naresh Gorghate

**ADMINISTRATION****Nagpur****CAO**

Sh. A A Goswami (Retired on 15.01.2024)

**SAO**

Sh. Rakesh Kumar Jatav (Joined on 31.01.2024)

**FAO**

Sh. Sanjay Kumar Singh

**AO**

Sh. Puneet Kumar (Joined on 22.04.2024)

**PR. PRIVATE SECY.**

Sh. DB Mundharikar

**PRIVATE SECY.**

Smt. RG Iyer

Sh. MC Tiwari

**AAO**

Sh. Rakesh Tiwari



|                                                                                                                             |                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sh. VD Bende                                                                                                                | Dr. Jimmy B. Vaidya, STA                                                |
| <b>PERSONAL ASSISTANT</b>                                                                                                   |                                                                         |
| Sh. SS Chalkhure (Transferred to ICAR-CCRI, Nagpur promoted to the post of PS on 27.06.2024)                                | Ms. Mithila Meshram, STA                                                |
| Sh. PP Ambade                                                                                                               | Sh. Rohit Katiyar, STA (Transferred to ICAR-IIPR, Kanpur on 25.10.2024) |
| Sh. K Vedavyas                                                                                                              | Sh. Ratnadeep Ramteke, STA                                              |
| <b>ASSISTANT</b>                                                                                                            |                                                                         |
| Smt. SP Kharche                                                                                                             | Dr. E. Raghu, STA (Transferred to ICAR-IIOR, Hyderabad on 23.07.2024)   |
| Sh. VM Waghmare                                                                                                             | Mr. Atul Lende, STA                                                     |
| Sh. KB Nandeshwar                                                                                                           | <b>CAT. I</b>                                                           |
| Sh. Chirag Singla (Joined on 28.08.2024)                                                                                    | Sh. SN Ingle, T-5 (Driver)                                              |
| Sh. Chandan Kumar (Joined on 02.09.2024)                                                                                    | Sh. Diwakar Sawaji, TO                                                  |
| Sh. Akshay Kumar (Joined on 04.09.2024)                                                                                     | Sh. RK Gaikwad, T-4 (Driver) (Retired on 31.07.2024)                    |
| Sh. Sanjay Meena (Joined on 06.09.2024)                                                                                     | Sh. BA Fande, Tech. Astt                                                |
| Sh. Raj Gawande (Joined on 21.11.2024)                                                                                      | Sh. SH Kumbhare, Tech. Astt                                             |
| <b>UDC</b>                                                                                                                  | Sh. SH Mandpe, Sr. Technician                                           |
| Sh. AM Kawale                                                                                                               | Sh. Abdul Waseem, Tech. Astt                                            |
| Sh. Saurabh Patil                                                                                                           | Sh. KH Mogre, Sr. Technician                                            |
| <b>LDC</b>                                                                                                                  | Sh. AB Mate, Sr. Technician                                             |
| Sh. Shital Kumar Sharma (Transferred to ICAR-VPKAS, Almora appointed to the post of Technical Assistant, T-3 on 10.06.2024) | Sh. Krushna Gajghate, Sr. Technician                                    |
| <b>Coimbatore</b>                                                                                                           |                                                                         |
| <b>ASSISTANT</b>                                                                                                            |                                                                         |
| Sh. N Ramesh                                                                                                                | Smt. Pooja Ghonge, Sr. Technician                                       |
| <b>UDC</b>                                                                                                                  | Sh. Ajit Meshram, Sr. Technician                                        |
| Miss RP Deepa                                                                                                               | Sh. Pankaj Gadge, Sr. Technician                                        |
| Miss R Ramya                                                                                                                | Sh. Kunal Gaikwad, Sr. Technician                                       |
| <b>Sirsa</b>                                                                                                                | Sh. Akshay Barahate, Sr. Technician                                     |
| AAO                                                                                                                         | Sh. Akshay K. Kamble, Sr. Technician                                    |
| Ms. Kalpana Singh                                                                                                           | Sh. Jaibhim S. Kambe, Sr. Technician                                    |
| <b>ASSISTANT</b>                                                                                                            |                                                                         |
| Sh. Satbir Singh                                                                                                            | Sh. Chandrashekhar Mundafale, Sr. Technician                            |
| Sh. Sanjay Kumar                                                                                                            | Sh. Paresh Bhoyar, Sr. Technician                                       |
| <b>TECHNICAL STAFF</b>                                                                                                      |                                                                         |
| <b>Nagpur</b>                                                                                                               |                                                                         |
| <b>CAT. III</b>                                                                                                             |                                                                         |
| Sh. Sanjay Kushwaha, CTO                                                                                                    | Sh. Dinesh kumar Mahule, Sr. Technician                                 |
| <b>CAT. II</b>                                                                                                              |                                                                         |
| Sh. CK Shastry, CTO (Retired on 31.10.2024)                                                                                 | Sh. Praful Margaye, Sr. Technician                                      |
| Smt. SU Dixit, CTO                                                                                                          | Sh. Ajay Sirsam, Sr. Technician                                         |
| Sh. RV Salame, ACTO                                                                                                         | Sh. Anup Kumar, Technician (Joined on 09.05.2024)                       |
| Sh. GV Deogirkar, TO                                                                                                        | Sh. Ahutosh Kumar Mishra, Technician (Joined on 09.05.2024)             |
| Smt. RS Deshmukh, TO                                                                                                        |                                                                         |
| Smt. Chetali Rodge, TO                                                                                                      |                                                                         |
| Sh. MR Meshram, STA                                                                                                         |                                                                         |
| Sh. HS Mundafale, STA                                                                                                       |                                                                         |
| Dr. Vrushali Deshmukh, STA                                                                                                  |                                                                         |
| <b>Coimbatore</b>                                                                                                           |                                                                         |
| <b>CAT. II</b>                                                                                                              |                                                                         |
| Sh. S Satyakumar, ACTO                                                                                                      | Sh. S Manikandan, T-4 (Driver)                                          |
| Smt. KS Subasri, ACTO                                                                                                       | Sh. J William Raja, Sr. Tech                                            |
| Ms. V Anisha, TO                                                                                                            | Sh. Sabarinathan, Sr. Tech                                              |
| Sh. A Karthick, TO                                                                                                          | Sh. M Sampath Kumar, Sr. Technician                                     |
| Mr. K Muthukumar, TO                                                                                                        | Sh. Koppula Suresh, Sr. Technician                                      |
| <b>CAT. I</b>                                                                                                               |                                                                         |
| Sh. S Manikandan, T-4 (Driver)                                                                                              |                                                                         |
| Sh. J William Raja, Sr. Tech                                                                                                |                                                                         |
| Sh. Sabarinathan, Sr. Tech                                                                                                  |                                                                         |
| Sh. M Sampath Kumar, Sr. Technician                                                                                         |                                                                         |
| Sh. Koppula Suresh, Sr. Technician                                                                                          |                                                                         |
| <b>Sirsa</b>                                                                                                                |                                                                         |



**CAT. II**

Sh. Satpal Singh, Tech. Asst.

**CAT. I**

Sh. Sanjeev Kumar, Tech. Asstt.

Sh. Bhura Ram, Sr. Technician

Sh. Naresh Kumar, Sr. Technician

Sh. Satbir Singh, Sr. Technician

Sh. Pali Ram, Technician

Sh. Prabhat Yadav, Technician (Joined on 15.05.2024)

**Skilled Support Staff****Nagpur**

Smt. LS Kanfade

Sh. Rewnath S Ambarte (Retired on 30.04.2024)

Smt. Kamala R. Kawale

Sh. Dhanraj S. Nagrare

Smt. Durga R. khandate

Sh. Kishor Barahate

Smt. Sulochana Tekam

Sh. Subhash R. Mankar

Sh. Haridas K. Dange

Sh. Anil B. Barahate

Sh. Kishor P. Bondade

Sh. Ankush V. Chaudhari

Smt. Chhaya R. Ganorkar

Sh. Damodar S. Chinurkar

Sh. Arun Wadguji Thool

Sh. Vijay Shyam Mogre

Sh. Indrapal R. Dhakne (Retired on 31.07.2024)

Sh. Deocharan P. Barahate

Smt. Lilabai R. Ambarte

Smt. Subhadra B. Kawale

Smt. Panchfula H. Pandhram

Smt. Tanabai A. Puram

Smt. Pushpa S. Sarate

Smt. Shobha K. Kumbhare

Smt. Chandabai S. Chapekar

Smt. Nanda Ramesh Ukre (Retired on 30.04.2024)

Smt. Indu I. Sayam (Retired on 30.11.2024)

Smt. Chindhabai V. Wankhede

**Coimbatore**

Sh. Karuppasamy

Sh. Manimekalai Karuppusamy

Smt. Lakshmi Rangasamy

**Sirsa**

Sh. Balli Ram

Sh. Madan Gopal

Sh. Radhey Shyam (Retired on 30.04.2024)

Sh. Ishwar Dutt

Sh. Anil Kumar

Sh. Subash Chander

Sh. Sharwan Kumar S/o Sh. Chandra Ram

Sh. Gurmeet S/o Sh. Ramkisan

Smt. Kesro W/o Sh. Gurmeet

Sh. Deepak Kumar S/o Sh. Nand Lal

Sh. Ram Avatar

Sh. Rajender Kumar (Retired on 31.12.2024)

Smt. Kamla

**Joined**

| Name and Designation                                                              | w.e.f.     |
|-----------------------------------------------------------------------------------|------------|
| Sh. Rakesh Kumar Jatav, Senior Administrative Officer joined at ICAR-CICR, Nagpur | 31.01.2024 |
| Sh. Puneet Kumar, Administrative Officer joined at ICAR-CICR, Nagpur              | 22.04.2024 |
| Sh. Anup Kumar, Technician, T-1, ICAR-CICR, Nagpur                                | 09.05.2024 |
| Sh. Ashutosh Kumar Mishra, Technician, T-1, ICAR-CICR, Nagpur                     | 09.05.2024 |
| Sh. Prabhat Yadav, Technician, T-1, ICAR-CICR RS, Sirsa                           | 15.05.2024 |
| Sh. Chirag Singla, Assistant joined at ICAR-CICR, Nagpur                          | 28.08.2024 |
| Sh. Chandan Kumar, Assistant joined at ICAR-CICR, Nagpur                          | 02.09.2024 |
| Sh. Akshay Kumar, Assistant joined at ICAR-CICR, Nagpur                           | 04.09.2024 |
| Sh. Sanjay Meena, Assistant joined at ICAR-CICR, Nagpur                           | 06.09.2024 |
| Sh. Raj Gawande, Assistant joined at ICAR-CICR, Nagpur                            | 21.11.2024 |

**Transfer**

| Name and Designation                                    | From                   | To                                            | w.e.f.     |
|---------------------------------------------------------|------------------------|-----------------------------------------------|------------|
| Dr. Rakesh Kumar Singh, Senior Scientist-cum-Head, KVK, | KVK, ICAR-CICR, Nagpur | KVK, Lakhimpur Kheri under ICAR-IISR, Lucknow | 18.03.2024 |
| Dr. Devindrappa, Scientist (Nematology)                 | ICAR-CICR, Nagpur      | ICAR-IIHR, Bengaluru                          | 10.04.2024 |



| Name and Designation                        | From              | To                                                                   | w.e.f.     |
|---------------------------------------------|-------------------|----------------------------------------------------------------------|------------|
| Sh. Shital Kumar Sharma, LDC                | ICAR-CICR, Nagpur | ICAR-VPKAS, Almora appointed to the post of Technical Assistant, T-3 | 10.06.2024 |
| Sh. Sameer Chalkhure, PA                    | ICAR-CICR, Nagpur | ICAR-CCRI, Nagpur promoted to the post of PS                         | 27.06.2024 |
| Dr. E. Raghu, Technical Assistant, T-3      | ICAR-CICR, Nagpur | ICAR-IIOR, Hyderabad                                                 | 23.07.2024 |
| Sh. Rohit Katiyar, Technical Assistant, T-3 | ICAR-CICR, Nagpur | ICAR-IIPR, Kanpur                                                    | 25.10.2024 |

## Promotion

| Name and Designation                           | Promoted to              | w.e.f.                          |
|------------------------------------------------|--------------------------|---------------------------------|
| Dr. M. Sabesh, Sr. Scientist                   | Pr. Scientist            | 10.04.2022                      |
| Dr. K. Velmourougane, Sr. Scientist            | Pr. Scientist            | 08.01.2023                      |
| Dr. PB Deulkar, ACTO, T(7-8)                   | CTO, T-9                 | 07.04.2019<br>(DPC on 29.08.23) |
| Dr. Jimmy Vaidya, Tech. Asstt. (T-3)           | Sr. Tech. Asstt. (T-4)   | 14.09.2023                      |
| Ms. Mithila Meshram, Tech. Asstt. (T-3)        | Sr. Tech. Asstt. (T-4)   | 30.10.2023                      |
| Sh. Rohit Katiyar, Tech. Asstt. (T-3)          | Sr. Tech. Asstt. (T-4)   | 20.11.2023                      |
| Sh. Satpal Singh, Tech. Asstt. (T-3)           | Sr. Tech. Asstt. (T-4)   | 22.11.2023                      |
| Sh. Ratnadeep Ramteke, Tech. Asstt. (T-3)      | Sr. Tech. Asstt. (T-4)   | 26.11.2023                      |
| Dr. E. Raghu, Tech. Asstt. (T-3)               | Sr. Tech. Asstt. (T-4)   | 08.01.2024                      |
| Sh. K. Muthukumar, Tech. Asstt. (T-3)          | Sr. Tech. Asstt. (T-4)   | 25.03.2024                      |
| Sh. Atul Lende, Tech. Asstt. (T-3)             | Sr. Tech. Asstt. (T-4)   | 09.04.2024                      |
| Sh. Bhumeshwar Fande, Sr. Technician (T-2)     | Tech. Asstt. (T-3)       | 07.02.2024                      |
| Sh. Sanjeev Kumar, Sr. Technician (T-2)        | Tech. Asstt. (T-3)       | 07.02.2024                      |
| Sh. Sujit Kumbhare, Sr. Technician (T-2)       | Tech. Asstt. (T-3)       | 21.03.2024                      |
| Sh. Abdul Waseem, Sr. Technician (T-2)         | Tech. Asstt. (T-3)       | 14.08.2024                      |
| Sh. Koppula Suresh, Technician (T-1)           | Sr. Technician (T-2)     | 02.04.2024                      |
| Sh. Krushna Gajghate, Technician (T-1)         | Sr. Technician (T-2)     | 03.04.2024                      |
| Ms. Pooja Ghonge, Technician (T-1)             | Sr. Technician (T-2)     | 12.04.2024                      |
| Sh. Ajit Meshram, Technician (T-1)             | Sr. Technician (T-2)     | 15.04.2024                      |
| Sh. Pankajkumar Gadge, Technician (T-1)        | Sr. Technician (T-2)     | 18.04.2024                      |
| Sh. Kunal Gaikwad, Technician (T-1)            | Sr. Technician (T-2)     | 23.04.2024                      |
| Sh. Akshay Barahate, Technician (T-1)          | Sr. Technician (T-2)     | 23.04.2024                      |
| Sh. Akshay Kamble, Technician (T-1)            | Sr. Technician (T-2)     | 03.06.2024                      |
| Sh. Jaibhim Kambe, Technician (T-1)            | Sr. Technician (T-2)     | 07.06.2024                      |
| Sh. Chandrashekhar Mundafale, Technician (T-1) | Sr. Technician (T-2)     | 07.06.2024                      |
| Sh. Paresh Bhoyar, Technician (T-1)            | Sr. Technician (T-2)     | 07.06.2024                      |
| Sh. Dineshkumar Mahule, Technician (T-1)       | Sr. Technician (T-2)     | 13.06.2024                      |
| Sh. Praful Margaye, Technician (T-1)           | Sr. Technician (T-2)     | 22.07.2024                      |
| Sh. Ajay Sirsam, Technician (T-1)              | Sr. Technician (T-2)     | 24.07.2024                      |
| Sh. Saurabh Patil, LDC                         | UDC                      | 04.12.2024                      |
| Dr. M. Sarvanan, Sr. Scientist (RGP 8000)      | Sr. Scientist (RGP 9000) | 20.04.2024                      |
| Dr. A. Sampathkumar, Sr. Scientist (RGP 8000)  | Sr. Scientist (RGP 9000) | 04.05.2023                      |
| Dr. Rahul Phuke, Scientist (RGP 7000)          | Sr. Scientist (RGP 8000) | 01.07.2024                      |
| Dr. P. Valarmathi, Scientist (RGP 7000)        | Sr. Scientist (RGP 8000) | 01.01.2024                      |
| Dr. Rakesh Kumar, Scientist (RGP 7000)         | Sr. Scientist (RGP 8000) | 01.01.2024                      |
| Dr. Joy Das, Scientist (RGP 7000)              | Sr. Scientist (RGP 8000) | 01.01.2024                      |
| Dr. Pooja Verma, Scientist (RGP 7000)          | Sr. Scientist (RGP 8000) | 01.07.2024                      |
| Dr. Shivaji Thube, Scientist (RGP 7000)        | Sr. Scientist (RGP 8000) | 01.07.2024                      |
| Dr. Amarpreet Singh, Scientist (RGP 7000)      | Sr. Scientist (RGP 8000) | 15.09.2020                      |
| Dr. Debashis Paul, Scientist (RGP 6000)        | Scientist (RGP 7000)     | 07.01.2024                      |

\* Technical Assessment Committee (DPC) meeting held on 17.12.2024 for considering the promotions in respect of Sh. S. Sathyakumar, ACTO, T(7-8) of Laboratory Technician Group under Category-III, Proceedings send to Council for approval, recommendation yet to come.



## Retirements

| Name                       | Post held           | Date of retirement |
|----------------------------|---------------------|--------------------|
| Sh. AA Goswami             | CAO                 | 15.01.2024         |
| Dr. AR Raju                | Principal Scientist | 28.02.2024         |
| Dr. UA Nandankar           | CTO                 | 28.02.2024         |
| Dr. K. Rathinavel          | Principal Scientist | 31.03.2024         |
| Sh. Rewnath Ambarte        | SSS                 | 30.04.2024         |
| Er. G. Majumdar            | Scientist           | 30.04.2024         |
| Smt. Nanda Ukre            | SSS                 | 30.04.2024         |
| Sh. Radhey Shyam           | SSS                 | 30.04.2024         |
| Dr. G. Balasubramani       | Principal Scientist | 30.06.2024         |
| Sh. SS Patil               | SMS, T-9            | 30.06.2024         |
| Dr. DV Patil               | Principal Scientist | 30.06.2024         |
| Sh. RK Gaikwad             | T-4 (Driver)        | 31.07.2024         |
| Sh. Indrapal Dhakne        | SSS                 | 31.07.2024         |
| Sh. Chandrashekhar Shastry | CTO, T-9            | 31.10.2024         |
| Smt. Indu Sayam            | SSS                 | 30.11.2024         |
| Sh. Rajender Kumar         | SSS                 | 31.12.2024         |

## 10.8: Other Information

### 10.8.1: Mera Gaon Mera Gaurav

Mera Gaon Mera Gaurav (MGMG) program has been implemented by ICAR- CICR Nagpur and its Regional Stations at Coimbatore and Sirsa as per the guidelines during 2024. The program was implemented in 55

adopted villages in 11 clusters by 45 Scientists as 11 teams. The details of Scientists involved and villages adopted are given below.

### Details of Scientists involved and Villages adopted under MGMG during 2024

| Team | Villages / Clusters / Districts adopted                                                                              | Name of the Team Leader and Members                                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | District: Nagpur<br>Cluster: Hingna<br>Villages: Khairi Pannase, Girola, Mohgaon, Salaimendha, Kohda                 | 1. Dr. V. Santhy (SeedTechnology)<br>2. Dr. Dipak Nagrale (Plant Pathology)<br>3. Dr. Shivaji Thube (Entomology)<br>4. Dr. Rakesh Kumar (Biotechnology)                                                           |
| II   | District: Nagpur<br>Cluster: Umred<br>Villages: Pipla, Vihirgaon, Dhurkheda, Pusagondi, Jhiri (Na)                   | 1. Dr. Sunil S. Mahajan (Seed Technology)<br>2. Dr. Rachana Pande (Entomology)<br>3. Dr. Neelkanth Hiremani (Plant Pathology)<br>4. Dr. Pooja Verma (Plant Biochemistry)                                          |
| III  | District: Wardha<br>Cluster: Arvi<br>Villages: Dabalipur, Malegaon theka, Saheli, Kharangana, Kachanpur              | 1. Dr. Ramkrushna GI (Agronomy)<br>2. Dr. Shailesh Gawande (Pathology)<br>3. Dr. Babasaheb Fand (Entomology)<br>4. Dr. Rahul Fuke (Plant Breeding)                                                                |
| IV   | District: Wardha<br>Cluster: Wardha<br>Villages: Narsola, Anji, Ganeshpur, Majra and Kamthi                          | 1. Dr. J. H. Meshram (Plant Physiology)<br>2. Dr. K. P. Raghvendra (Biotechnology)<br>3. Dr. M Sarvanan (Plant Breeding)<br>4. Dr R. Jaya Kumaravardan (Agrl. Economics)                                          |
| V    | District: Nagpur<br>Cluster: Umred<br>Villages: Wadegaon (kale), Akola, Karandla, Navegaon (Sadhu), Barva            | 1. Dr. Vishlesh Nagrare, (Entomology)<br>2. Dr. Manikandan (Soil Science)<br>3. Dr. Joy Das (Biotechnology)                                                                                                       |
| VI   | District: Nagpur<br>Cluster: Nagpur<br>Villages: Chichkhota, Mohgaon, Chimnazari, Sonegaon, Alagondi                 | 1. Dr. Vinita Gotmare (Genetics & Cytogenetics)<br>2. Dr. J. Amudha (Biotechnology)<br>3. Dr. Rajkumar Ramteke (Genetics and Plant Breeding)<br>4. Dr. Vivek Shah (Entomology)                                    |
| VII  | District: Coimbatore<br>Block: SS Kulam<br>Villages: Kondeyam Palayam, Keeranatham, Kaalipalayam, As Kulam, SS kulam | 1. Dr. P. Nalayini (Agronomy)<br>2. Dr. Isabella Agarwal (Agrl. Economics)<br>3. Dr. M. Amutha (Agrl. Entomology)<br>4. Dr. A. Manivannan (Plant Breeding and Genetics)<br>5. Dr. Sampath Kumar (Plant Pathology) |



| Team | Villages / Clusters / Districts adopted                                                                                              | Name of the Team Leader and Members                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIII | District: Tiruppur<br>Block: Gudimanagalam<br>Villages: Virukalpatti, Virukalpatti-Pudur, Vallakundapuram, Marikanti Puthupalayam    | 1. Dr. J. Gulsar Banu (Nematology)<br>2. Dr. R. Raja (Agronomy)<br>3. Dr. K. Shankarganesh (Agri. Entomology)<br>4. Dr. K. Baghyalakshmi (Plant Breeding and Genetics)                                                       |
| IX   | District: Coimbatore<br>Block: Pollachi North<br>Villages: Devambaduvalas, Vadakkipalayam, Puravipalayam, Zaminkalathur and Athiyur  | 1. Dr. S. Manickam (Plant Breeding and Genetics)<br>2. Dr. M. Sabesh (Computer Applications)<br>3. Dr. D. Kanjana (Soil Science)<br>4. Dr. P. Valarmathi (Plant Pathology)                                                   |
| X    | District: Coimbatore<br>Block: Karamadai<br>Villages: Periyanaickenpalayam, Kuppuchipalayam, Kasthuripalayam, Veerapandi, Vellamadai | 1. Dr. K. Sankaranarayanan (Agronomy)<br>2. Dr. S. Usha Rani (Agri. Extension)<br>3. Dr. K. Ramaesh (Agri. Entomology)<br>4. Dr. J. Annie Sheeba (Plant Physiology)                                                          |
| XI   | District: Sirsa<br>Villages: Khedi, Chaharwala, Chadiwal, Hanzira                                                                    | 1. Dr. S.K. Sain (Plant Pathology)<br>2. Dr. S.K. Verma ((Plant Breeding and Genetics)<br>3. Dr. Rishi Kumar (Agri. Entomology)<br>4. Dr. Amarpreet Singh (Agronomy)<br>5. Dr. Subash Chandra ((Plant Breeding and Genetics) |

#### Extension Activities conducted during the year 2024 under MGMG in the adopted villages



Farmers Interface meeting at Village Khedi by MGMG Team XI



Field Visit by MGMG Team XI at village Khedi



Participation of MGMG farmers in the district level Kisan Mela and Exhibition at Bhattu, Sirsa



Participation of MGMG farmers in the training on organic cotton production technologies at KVK, Sirsa



Visit by MGMG Team VIII to cotton fields for creating awareness about Clean Cotton Cultivation



Visit by MGMG Team VIII to cotton fields for recommending strategies to manage pests and diseases



Visit by MGMG Team X to HDPS cotton fields



Participation of MGMG farmers in Krishi Mela in the village Kuppachipalayam



Scientists' visit to demonstration field on HDPS cotton in MGMG village

## 10.8.2: Development Action Plan for Scheduled Caste (formerly SCSP) 2024

### Overview of the Scheme:

The Development Action Plan for Scheduled Castes (DAPSC), previously known as the Scheduled Caste Sub Plan (SCSP), is a central government-sponsored initiative aimed at improving the livelihoods of Scheduled Caste (SC) communities, primarily through agricultural development and skill enhancement. Implemented by ICAR-CICR, Nagpur, the program sought to enhance productivity and income within SC households by addressing agribusiness needs and promoting the use of available resources.

### Objective:

The main objectives of the scheme were:

1. Increase Income Levels: Elevate the income of SC families through targeted income-generating schemes, skill development, and infrastructure improvement.
2. Enhance Agricultural Productivity: Provide technological support and scientific guidance to increase productivity and improve agricultural practices.
3. Capacity Building: Offer training and workshops to build skills and knowledge, empowering the SC community, especially women.

### Program Implementation:

The DAPSC was implemented in five districts of Maharashtra with a high SC population (50% or more). These districts included:

- Nagpur
- Wardha
- Chandrapur
- Amaravati
- Yavatmal

### Key implementation steps:

- Beneficiary Identification: Families were identified with the help of State Government Agencies.
- Program Planning & Execution: Planned at the institute level and executed through a committee formed for each adopted village.
- Targeted Poor SC Families: The scheme directly benefited the poorest families, providing them with agricultural inputs and technological support.

### Key Activities and Interventions:

1. Technological Interventions:
  - Dissemination of scientific knowledge and agricultural practices.
  - Introduction of new technologies and pest management solutions.
  - Regular interface meetings and timely solutions to farmers' issues.
2. Skill Development:

- Regular skill development programs and workshops on agricultural practices, business development, and entrepreneurship.
- Exposure visits to improve farmers' understanding of best practices.

### 3. Empowerment of Women Farmers:

- Mobilization of women from SC families to form Self-Help Groups (SHGs).
- SHGs received capacity-building training, entrepreneurship development, and technical assistance to generate sustainable, year-round income.

### 4. Agricultural Support:

- Farmers were trained in the scientific cultivation of cotton through a complete package of practices, including the use of high-quality seeds and integrated pest management.

**Team Involved in the Implementation:** The program was executed by the following committee members:

- **Nodal Officer:**
  - Dr. J. H. Meshram, Principal Scientist (Plant Physiology)
- **Members:**
  - Dr. Ramkrishna G. I., Sr. Scientist (Agronomy)
  - Dr. S. P. Gawande, Sr. Scientist (Plant Pathology)
  - Dr. B. B. Fand, Sr. Scientist (Entomology)
  - Dr. N. S. Hiremani, Scientist (Plant Pathology)
  - Dr. U.V. Galkate, SMS (Veterinary Sciences), KVK
  - Shri. Sheopal H. Mandape, Sr. Technician
  - Shri. Akshay K. Kamble, Sr. Technician
  - SAO & FACO

### Achievements:

- Improved Productivity & Income: Farmers' agricultural productivity improved, leading to increased incomes.
- Empowered Women: Women farmers gained independence and entrepreneurship skills through SHGs.
- Enhanced Agricultural Knowledge: Farmers were trained in modern cotton cultivation techniques, leading to better yields.
- Infrastructure Development: Improvements in sanitation, public premises cleanliness, and awareness of state agricultural schemes benefited the local communities.

### Conclusion:

The Development Action Plan for Scheduled Caste (DAPSC) in 2024 successfully enhanced the livelihoods of SC communities through targeted agricultural and capacity-building interventions. By empowering both men and women, the program brought about sustainable changes in farming practices and household incomes, making a significant impact in the rural areas of Maharashtra.



**The Details of various Training programme conducted under DAPSC during 2024**

| <b>Sl. No.</b> | <b>Name of programme</b>                                                                                                | <b>Venue and Date</b>                                                | <b>Male benefi- ciary</b> | <b>Female benefi- ciary</b> | <b>Total No. of benefi- ciaries</b> | <b>Programmes Details</b>                                                                                                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-----------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.             | Farmers training on "Opportunities and Challenges in Livestock Production"                                              | Veterinary College, Nagpur<br>16 January 2024                        | 100                       | 0                           | 100                                 | Farmers from Khadki Ta. Narkhed, Hingna Ta. Saoner, Parsodi Ta. Parseoni, Wadvihara & Mendhepathar Ta. Katol, dist. Nagpur participated in training cum workshop on livestock production and management. |
| 2.             | Farmers training on "Role of Livestock Production in Sustainable Agriculture"                                           | ICAR-CICR, Nagpur<br>21 February 2024                                | 98                        | 8                           | 106                                 | SC Farmers from Nagpur and Wardha District participated in Interface Farmers Meeting on "Livestock Production in Sustainable Agriculture "                                                               |
| 3.             | Farmers meet on the occasion of "16th instalment of PM KISAN SAMMAN NIDHI" and Training on Integrated Cotton Management | ICAR-CICR, Nagpur<br>28 February 2024                                | 67                        | 4                           | 71                                  | Online webcasting of Hon. Prime Minister Shri. Narendra Modi on the occasion of "16th instalment of PM KISAN SAMMAN NIDHI"                                                                               |
| 4.             | Livelihood Enhancing Skill Development Training for Rural Women.                                                        | ICAR- CICR, Nagpur<br>06 March 2024                                  | 0                         | 60                          | 60                                  | One day training on Livelihood Enhancing Skill Development Training for Rural Women from Nagpur, Wardha and Yavatmal District.                                                                           |
| 5.             | Cotton farmers Training cum workshop, on "HDPS & Closer Spacing cotton cultivation Technologies"                        | Malkapur & Gandhinagar Ta, Kalambar, Dist. Yavatmal.<br>14 June 2024 | 47                        | 9                           | 56                                  | One day Farmers training cum workshop on HDPS & Closer Spacing cotton cultivation Technologies.                                                                                                          |
| 6.             | Cotton farmers Training on "Integrated Cotton Management"                                                               | ICAR- Central Institute for Cotton Research, Nagpur.<br>12 July 2024 | 124                       | 15                          | 139                                 | Conducted Workshop on Best Management Practices for Enhancing Cotton Productivity. Farmers from Nagpur, Amravati and Wardha participated in this program.                                                |
| 7.             | "Training on PB Rope"                                                                                                   | Naigaon Ta. Daryapur, Dist. Amravati<br>12 August 2024               | 19                        | 6                           | 25                                  | Farmers training on PBW Management and use of PB rope technologies.                                                                                                                                      |
| 8.             | "Training on PB Rope"                                                                                                   | Bhajipani Ta. Katol, Dist. Nagpur<br>13 August 2024                  | 12                        | 2                           | 14                                  | Farmers training on PBW Management and use of PB rope technologies.                                                                                                                                      |
| 9.             | "Training on PB Rope"                                                                                                   | Malkapur, Ta. Kalambar, Dist.Yavatmal<br>13 August 2024              | 14                        | 3                           | 17                                  | Farmers training on PBW Management and use of PB rope technologies.                                                                                                                                      |



| Sl. No. | Name of programme                                                      | Venue and Date                                                                 | Male beneficiary | Female beneficiary | Total No. of beneficiaries | Programmes Details                                                                                                                                                                                                                                                                                                                                                                     |
|---------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|--------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.     | Field Exposure Visit                                                   | PDKV, Akola<br>20 <sup>th</sup> to 22 <sup>nd</sup> September 2024             | 244              | 68                 | 312                        | Field Exposure Visit on the Occasion of Shivar Pheri at. PDKV, Akola. Conducted for SC Farmers from Nagpur, Amravati, Yavatmal and Wardha district                                                                                                                                                                                                                                     |
| 11.     | Visit of Shri Giriraj Singh Ji, Hon'ble Union Minister of Textiles     | ICAR-Central Institute for Cotton Research, Nagpur.<br>25 September 2024       | 3                | 2                  | 5                          | Interaction with farmers and critical input distribution by the hands of Shri Giriraj Singh Ji, Hon'ble Union Minister of Textiles.                                                                                                                                                                                                                                                    |
| 12.     | Cotton growing farmers training cum Field Visit at Cotton growing area | Malkapur & Gandhinagar Ta. Kalam, Dist. Yavatmala<br>16 October 2024           | 40               | 10                 | 50                         | One day framers training cum field day program.                                                                                                                                                                                                                                                                                                                                        |
| 13.     | Farmers Training cum Demonstration of Cotton Stalk Shredder.           | ICAR-Central Institute for Cotton Research, Nagpur.<br>17 December 2024.       | 30               | 0                  | 30                         | Farmers training cum live demonstration of Cotton Stalk Shredder and Drone at CICR cotton field. Total 30 farmers from Malkapur & Sherad Ta. Kalam, Dist. Yavatmal participated in this programme.                                                                                                                                                                                     |
| 14      | Water ATM Visit                                                        | Khadki Ta. Narkhed & Chikhali Maina Ta. Katol Dist Nagpur<br>19 December 2024. | 65               | 27                 | 92                         | Water ATM RO Plant Inspection and Inauguration programme organized by ICAR-CICR, Nagpur under DAPSC at Khadki Ta. Narkhed and Chikhali Maina, Ta. Katol, Dist. Nagpur.                                                                                                                                                                                                                 |
| 15      | Krishi Mela cum Input Distribution Programme                           | ICAR-Central Institute for Cotton Research, Nagpur.<br>20 December 2024.       | 41               | 3                  | 44                         | Krishi Mela cum Input Distribution Programme organized by ICAR-CICR, Nagpur under DAPSC dated on 20 Dec. 2024 at ICAR-CICR, Nagpur. Total 44 SC farmers from Chondi Bahadarpur and Sawalapur, Ta. Arvi, dist. Wardha actively participated in Krishi Mela. Critical inputs like Tarpaulin, Irrigation Tube (Lapeta Pipe) and Pesticide Protection Kit distributed to SC beneficiaries. |



**The details of Critical input distribution under the DAPSC schemes during 2024**

| Sl. No. | Name of Item                | Venue and Date                                                                                                                                                                                                                                                                                                                                                                             | No of SC bene ficiaries | Male Bene ficiary | Female bene ficiary | Input distributed/skill imparted                                                                                                                                                                                                                                              |
|---------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.      | Milk Can                    | ICAR-CICR, Nagpur<br>21 February 2024                                                                                                                                                                                                                                                                                                                                                      | 106                     | 98                | 8                   | Distribution of Milk Can to SC beneficiaries from Pipardol, Amboli, Welsakhara, Godhani, Wadegaon, Tirkhura, Dhurkheda, Ta. Umred, Chikhali Maina, Mendhepathar, Wadvihara, Ta. Katol Dist. Nagpur. & Salapur, Ta. Samudrapur, Dist. Wardha.                                  |
| 2.      | Water Purifier              | ICAR-CICR, Nagpur<br>21 February 2024                                                                                                                                                                                                                                                                                                                                                      | 71                      | 67                | 4                   | Distribution of Water Purifier to SC beneficiaries from Sawarkhanda, Ta. Kuh, Hingna, Ta. Saoner, Dist. Nagpur, Mangaon & Salapur Ta. Samudrapur, Dist. Wardha                                                                                                                |
| 3.      | Sewing Machine              | ICAR- Central Institute for Cotton Research, Nagpur.<br>06 March 2024.                                                                                                                                                                                                                                                                                                                     | 60                      | 0                 | 60                  | Distribution of Sewing Machine to SC female beneficiaries from Mendhepathar, Wadvihara Ta. Katol, Parsodi, Ta. Parseoni, Sawar khanda, Ta. Kuh, Wadegaon, Ta. Umred Dist. Nagpur, Durgada, Ta. Deoli, Dist. Wardha, Gandhinagar, Sherad & Malkapur Ta. Kalam, Dist. Yavatmal. |
| 4.      | Goat and Goat feed          | Punyashlok Ahilyadevi Mendhi<br>Va Sheli Vikas Prakshetra,<br>Bondri, Taluka. Ramtek, Dist.<br>Nagpur<br><br>19 March 2024                                                                                                                                                                                                                                                                 | 52                      | 43                | 9                   | Vaccinated Two female goats & 50 Kg Goat Feed distributed to each Beneficiary from Hingna, Ta. Saoner, Parsodi, Ta. Parseoni, Wadvihara, Ta. Katol, Khadki, Ta. Narkhed. Dist. Nagpur.                                                                                        |
| 5.      | Goat and Goat feed          | Punyashlok Ahilyadevi Mendhi<br>Va Sheli Vikas Prakshetra,<br>Pohra Bandi, Taluka, Dist.<br>Amravati<br><br>21 March 2024                                                                                                                                                                                                                                                                  | 41                      | 32                | 9                   | Vaccinated Two female goats & 50 Kg Goat Feed distributed to each Beneficiary from Husenpur, Palwadi, & Katsur Ta. Teosa. Dist. Amravati.                                                                                                                                     |
| 6.      | Tur Seed and Bio-Fertilizer | Vadvihara, Mendhepathar,<br>Chikhali Maina, Ta. Katol,<br>Khadki Ta. Narkhed,<br>Hingna Ta. Saoner, Parsodi,<br>Ta. Parseoni, Husenpur,<br>Sultanpur,<br>Katsur, Ta. Tiosa, Dist. Amravati<br>Mangaon, Salapur Ta.<br>Samudrapur Dist. Wardha<br>Malkapur, Gandhinagar,<br>Sherad, Ta. Kalam, Dist.<br>Yavatmal<br>6 June to 14 June 2024                                                  | 500                     | 410               | 90                  | Tur (PKV – TARA)<br>Seed having 2 kg packing (4 Kg to each) distributed for Cotton intercropping to Scheduled caste farmers in Kharif season.                                                                                                                                 |
| 7.      | Cotton Seed & Herbicide     | Malkapur & Gandhinagar Ta,<br>Kalam, Dist. Yavatmal.<br><br>14 June 2024.                                                                                                                                                                                                                                                                                                                  | 56                      | 47                | 9                   | Rasi RCH 929 BGII & Rasi RCH 971 BGII of Cotton variety distributed for HDPS & Closer spacing cultivation Technologies to Scheduled caste farmers from Malkapur & Gandhinagar Ta, Kalam, Dist. Yavatmal.                                                                      |
| 8.      | Crop Protection Kit         | Vadvihara, Mendhepathar,<br>Chikhali Maina, Ta. Katol,<br>Khadki Ta. Narkhed, Bargaon,<br>Ta. Kamptee, Wadegaon,<br>Pipardol, Ta. Umred, Khobna,<br>Bodkipeth, Amti,<br>Sawarkhanda, Ta. Kuh<br>Hingna, Khairi Panjabrao, Ta.<br>Saoner, Parsodi, Ta. Parseoni,<br>Dist. Nagpur Husenpur,<br>Sultanpur, Katsur, Ta. Tiosa,<br>Morshi Khurd, Ta. Warud,<br>Pohra Purna, Ta. Bhatkuli, Dist. | 871                     | 734               | 137                 | Crop Protection kit contain Fungicides, Insecticides and Nutrient Kit                                                                                                                                                                                                         |



| Sl. No. | Name of Item                 | Venue and Date                                                                                                                                                                                                                                                                                                                                              | No of SC bene ficiaries | Male Bene ficiary | Female bene ficiary | Input distributed/skill imparted                                                                                                                                                                                                        |
|---------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                              | Amravati Mangaon, Salapur Ta. Samudrapur Chondi Bahadarpur, Sawalapur, Ta. Arvi, Durgada, Ta. Deoli, Dist. Wardha Malkapur, Gandhinagar, Sherad, Ta. Kalamb, Dist. Yavatmal 06 June 2024 to 30 August 2024 .                                                                                                                                                |                         |                   |                     |                                                                                                                                                                                                                                         |
| 9       | LED Torch                    | Vadivara, Mendhepathar, Chikhali Maina, Ta. Katol, Khadki Ta. Narkhed, Borgaon, Ta. Kamptee, Wadegaon, Pipardol, Ta. Umred, Hingna, Ta. Saoner, Dist. Nagpur Husenpur, Sultanpur, Katsur, Ta. Teosa, Morshi Khurd, Ta. Warud, Pohra Purna, Ta. Bhatkuli, Dist. Amravati Chondi Bahadarpur, Sawalapur, Ta. Arvi, Dist. Wardha 06 June 2024 to 30 August 2024 | 415                     | 348               | 67                  | LED Torch distributed to SC Farmers from DAPSC adopted villages of Wardha, Amravati and Nagpur districts.                                                                                                                               |
| 10      | Pesticide Protection Kit     | ICAR- Central Institute for Cotton Research, Nagpur 12 July 2024                                                                                                                                                                                                                                                                                            | 64                      | 59                | 5                   | Pesticide Protection kit having Apron, Hand Gloves, Gumboots, Helmet, Eye protection Goggle, Mask distributed to SC farmers from Nagpur, Amravati and Wardha district.                                                                  |
| 11      | Pharomone Trap & PBW Lure    | Naigaon Ta. Daryapur, Dist. Amravati Malkapur Ta. Kalamb, Dist. Yavatmal and Bhajipani, Ta. Katol, Dist. Nagpur Date 12 & 13 August 2024                                                                                                                                                                                                                    | 42                      | 33                | 9                   | Pharomone Trap & PBW Lure distributed to SC Cotton Growing farmers from Nagpur, Yavatmal and Amravati district for Pink Bollworm management.                                                                                            |
| 12      | Cremit PBW Tube              | Naigaon Ta. Daryapur, Dist. Amravati Malkapur Ta. Kalamb, Dist. Yavatmal and Bhajipani, Ta. Katol, Dist. Nagpur Date 12 & 13 August 2024                                                                                                                                                                                                                    | 42                      | 33                | 9                   | Cremit PBW Tube distributed to SC Cotton Growing farmers from Nagpur, Yavatmal and Amravati district for Pink Bollworm management.                                                                                                      |
| 13.     | Gram Seed (Chickpea)         | ICAR- Central Institute for Cotton Research, Nagpur 24 & 25 October 2024                                                                                                                                                                                                                                                                                    | 299                     | 256               | 43                  | Gram seed Distributed to Scheduled caste farmers for Rabi season. Gram Variety, Jaki-9218 having packing 30 Kg bag. (one bag to each farmer)                                                                                            |
| 14.     | Wheat Seed                   | ICAR-CICR, Nagpur 24 & 25 October 2024                                                                                                                                                                                                                                                                                                                      | 200                     | 166               | 34                  | Wheat seed Distributed to Scheduled caste farmers for Rabi season. Wheat variety 'MACS-6222' having packing 20 kg bag. (two bag to each farmer)                                                                                         |
| 15.     | Bicycle Distribution         | ICAR- Central Institute for Cotton Research, Nagpur. 05 December 2024.                                                                                                                                                                                                                                                                                      | 115                     | 39                | 76                  | 39 Men & 76 Woman bicycle distributed to SC student from DAPSC adopted villages of Wardha, Yavatmal and Nagpur districts.                                                                                                               |
| 16.     | Student Kit                  | ICAR- Central Institute for Cotton Research, Nagpur. 05 December 2024.                                                                                                                                                                                                                                                                                      | 99                      | 34                | 65                  | Student kit having School bag, Water bottle, Compos box, Notebooks etc. distributed to SC student from DAPSC adopted villages of Wardha, Yavatmal and Nagpur districts                                                                  |
| 17.     | Mobile Cotton Stalk Shredder | ICAR- Central Institute for Cotton Research, Nagpur. 17 December 2024.                                                                                                                                                                                                                                                                                      | 48                      | 41                | 7                   | 2 Mobile Cotton Stalk Shredder distributed to Farmers group 1. Krushi Utkarsh shetkari Sendriya Kad-Dhanya Utppadak Gat, Malkapur, Ta. Kalamb and 2. Baliraja Shetkari Sendriya Dhanya Utppadak Gat, Sherad Ta. Kalamb, Dist. Yavatmal. |

| Sl. No. | Name of Item                  | Venue and Date                                                                           | No of SC bene ficiaries | Male Bene ficiary | Female bene ficiary | Input distributed/skill imparted                                                                                                                                                                     |
|---------|-------------------------------|------------------------------------------------------------------------------------------|-------------------------|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.     | Tarpaulin                     | ICAR- Central Institute for Cotton Research, Nagpur.<br>20 December 2024.                | 44                      | 41                | 3                   | Tarpaulin distributed to SC farmers from Wardha District                                                                                                                                             |
| 19.     | Irrigation Tube (Lapeta Pipe) | ICAR- Central Institute for Cotton Research, Nagpur.<br>20 December 2024.                | 44                      | 41                | 3                   | Irrigation Tube (Lapeta Pipe) distributed to SC farmers from Wardha District                                                                                                                         |
| 20.     | RO Water ATM unit             | Khadki, Ta. Narkhed; Chikhali Maina, Ta. Katol; Khobna & Amti, Ta. Kuhi, Nagpur district | 170                     | 132               | 38                  | Four RO Water ATM machine installed to provide clean, and safe drinking water facility to rural villages- Khadki Ta. Narkhed, Chikhali Maina Ta. Katol, Khobna & Amti, Ta. Kuhi, of Nagpur district. |



Input Distribution on the occasion of 16th installment of PM KISAN SAMMAN NIDHI at ICAR-CICR, Nagpur on 28 February 2024



Livelihood Enhancing Skill Development Training for Rural Women & Sewing Machine Distribution at ICAR-CICR, Nagpur on 6 March 2024



Goat feed distribution at Ahilyadevi Mendhi Va Sheli Vikas Prakshetra Bondari, District Nagpur on 19 March 2024



Cotton Seed & Bio-Fertilizers Distribution at Malkapur, Ta. Kalamb, Dist. Yavatmal on 14 June 2024



Cotton farmers Training on “Integrated Cotton Management” at ICAR-CICR, Nagpur on 12 July 2024



Gram Seed, Wheat seed & Bio-Fertilizer kit distribution at ICAR-CICR, Nagpur on 24 December 2024

### **DAPSC activities at ICAR-CICR, Coimbatore**

“Leveraging improved cotton technologies and sustainable interventions for marginal SC Livelihoods / SC farmers empowerment in Prambalur District of Tamil Nadu”

**Beneficiaries identified:** to address the issues, fifty farmers were identified from A. Kudikadu, Neikuppai and Keelaperambalur villages which comes under Veppanthattai and Veppur block of Perambalur district and the necessary inputs were supplied.

#### **Details of input distributed to the beneficiaries:**

Seed, wooden scale, NSKE 1L + Pseudomonas 1 kg + Ullala 60 g + Emamectin Benzoate 100g + Cabrio top 300g + Planifix 100ml, + All19 - 4kg + PN- 4kg + Westa boran - 2kg + MAP - 2kg + Imidacloprid 17.8 % SL 250ml, Lambdacyhalothrin 5% EC 500ml, Profenofos 50 % EC 500ml, Carbendazim 50 % WP 1 kg, Dryland weeder, Waterproof Tarpaulin Sheet, Sprayer, Back pack bag, File, Pen and Note pad.

**Aim:** This program is aimed to enhance the productivity of cotton from the SC farmers of selected village by providing key competencies to the farmers and through technology intervention.

#### **Objectives:**

- To identify the critical needs of SC farmers through baseline surveys in the study areas

- To carry out the need-based Capacity augmentation programmes, like training on selected technologies - closer spacing, drip fertigation, and other crop protection technologies for enhancing the yield and income.
- To provide critical inputs to identified & needy beneficiaries, enhance the cotton production and increase the income.
- To obtain feedback from the selected SC beneficiaries for project appraisal and further Scalability

#### **Outcome:**

- After completing this programme, all the beneficiaries were able to Understand the best varietal selection, the Importance of soil health in better crop yield
- Importance of closer spacing in rainfed cultivation of cotton
- Role of organic and bio-intensive pest management practices in sustainable cotton production
- Reduce cost of cultivation: Preparation and use of organic inputs will reduce the cost of cultivation and increase the yield, and the quality of the crop is improved. Further, all the beneficiaries acknowledged this project by witnessing a higher yield than that of the previous years.

#### **The details of various Training programme conducted under the DAPSC during 2024.**

| S. No. | Name of programme                                                                                                             | Venue and Date                                                                                    | Male Beneficiary | Female Beneficiary | No of SC beneficiaries | Programmes Details                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------|--------------------|------------------------|----------------------------------------------------------------------------------------------------|
| 1.     | "Leveraging improved cotton technologies and sustainable interventions for marginal SC Livelihoods / SC farmers'              | KVK, Perambalur, 08 August 2024                                                                   | 29               | 21                 | 50                     | Farmers training cum input distribution                                                            |
| 2.     | Farmers training on Cotton HDPS field Demonstration cum input distribution event for SC farmers engaged in cotton cultivation | Panchayat Union Office in Valikandapuram, Perambalur district 13 September 2024                   | 29               | 21                 | 50                     | HDPS field Demonstration cum input distribution event for SC farmers engaged in cotton cultivation |
| 3.     | Cotton HDPS field Demonstration cum input distribution event for SC farmers engaged in cotton cultivation                     | Kudikadu, Neykuppai, and Keezha Perambalur villages of the Perambalur district 24-25 October 2024 | 29               | 21                 | 50                     | Farmers awareness programme on cotton pest management cum input distribution                       |



## Publications

- Shankarganesh, K., Rameaseh, K., Sampathkumar, A., Raja, R., Manicckam, S., Prakash, A.H and Prasad, Y.G. 2023. Cotton Insects Pests and their Management (Tamil Bulletin) P.1-24.
- Sampathkumar, A., Shankarganesh, K., Rameaseh, K., Raja, R., Manicckam, S., Prakash, A.H and Prasad, Y.G. 2023. Diseases of cotton and their Integrated Disease management (Tamil Folder) P. 1-6
- Raja, R., Shankarganesh, K., Rameaseh, K., Sampathkumar, A., Manicckam, S., Prakash, A.H and Prasad, Y.G. 2023. Fertilizer management of ELS cotton (Tamil Folder). P. 1-4



DAPSC training programme on 08.08.2024



DAPSC training programme and Inputs distribution to the farmers on 13.09.2024



DAPSC training programme and Inputs distribution to the farmers on 13.09.2024

- Shankarganesh, K., Rameaseh, K., Sampathkumar, A., Raja, R. and Manickam, S. 2025. A training on Cultivation of cotton to Perambalur district farmers, Thinamani (Local Daily)
- Shankarganesh, K., Rameaseh, K., Sampathkumar, A., Raja, R., Manicckam, S. and Prakash, A.H. 2025. A training on Cultivation of cotton and inputs distribution to Perambalur district farmers, Thinamani (Local Daily).



Inputs distribution to SC farmers

### 10.8.3: Development Action Plan for Scheduled Tribe (DAPST)

The Development Action Plan for Scheduled Tribes (DAPST), formerly known as the Tribal Sub Plan (TSP), is an initiative by the Government of India aimed at enhancing the socio-economic conditions of Scheduled Tribes (ST's) communities. This initiative provides comprehensive support to tribal farmers through training, resource distribution, and skill development programs. By integrating modern farming techniques with traditional agricultural knowledge, the program seeks to improve productivity, income and sustainability among ST's farmers, conducting specialized training programs, educational initiatives, and exposure visits to empower tribal farmers with advanced agricultural knowledge, promoting environmental friendly and economically viable farming practices to ensure long-term benefits, encouraging the active participation of women in farming through Self-Help Groups (SHGs), thereby strengthening their financial independence, distribution of essential farming resources such as high-yielding seeds, bio-fertilizers, and pest management solutions to enhance agricultural productivity and facilitating income-generating activities through integrated farming systems and agribusiness models to boost financial stability among tribal communities. Conducting workshops on improved farming techniques for key crops such as cotton, paddy and vegetables; organizing exposure visits and awareness programs focused on modern agricultural practices, farm mechanization, and climate-resilient farming, providing vocational training in agribusiness, pest management, and conservation farming to enhance livelihood options; Offering personal safety training for

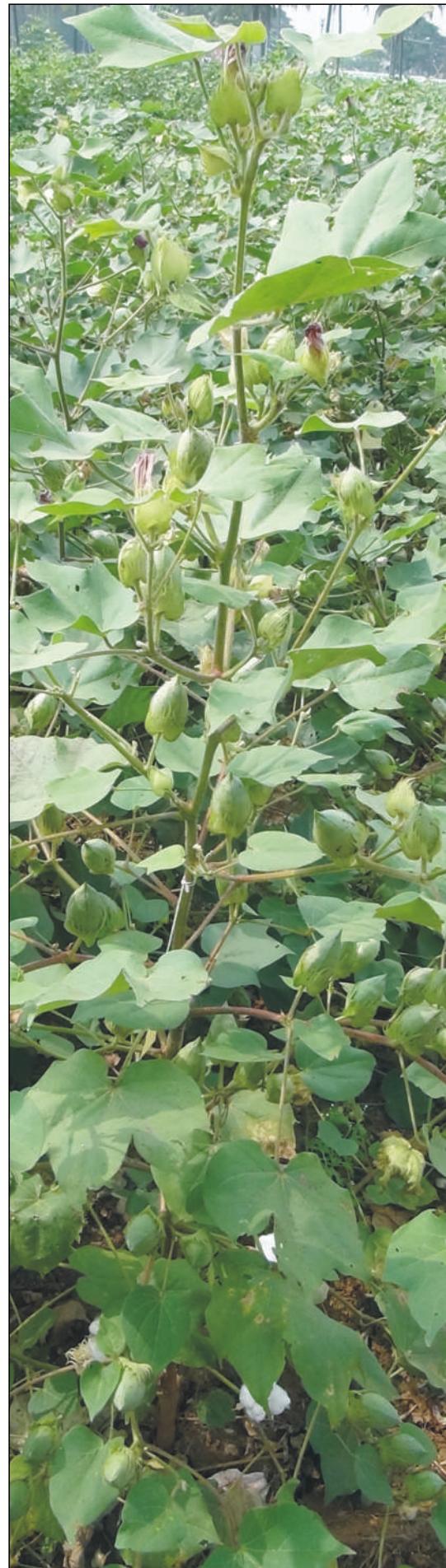
handling agrochemicals and farm machinery to ensure the well-being of farmers.

Formation and strengthening of Self-Help Groups (SHGs) to encourage women's participation in sustainable farming and agribusiness activities, Capacity-building programs aimed at financial literacy, leadership skills, and cooperative management facilitating access to credit and market linkages to improve women farmers' earning potential, to improve agricultural productivity and sustainability. The following inputs will be distributed High-quality seeds of cotton, paddy, and vegetable seed kits to encourage kitchen gardening and nutrition security, bio-fertilizers, organic pesticides to promote eco-friendly farming, groundnut Seeds, Summer Moong Seeds, Lapeta pipes, Battery cum hand operated sprayers, pest control pheromone traps along with pectin lure to assist in efficient farming operations, Cotton picking bags which are used to collect harvested cotton, N: P: K fertilizers are used to promote plant growth, increase crop yields, and improve soil health, tarpaulins, Rechargeable torch,

Vermiculture vermbined and non-electrical water purifier which is primarily used to provide clean drinking water to STs Farmers.

The DAPST program has a transformative effect on tribal farming communities. The expected impact for 2024-25 includes increased agricultural productivity & income by adopting modern farming techniques and utilizing high-quality inputs to tribal farmers are expected to achieve higher yields and better market prices. Improved Integrated Pest & Disease Management (IPM) techniques will result in reduced crop losses and healthier produce. The program will ensure long-term agricultural sustainability & benefits by promoting organic farming, conservation techniques, and water-efficient irrigation systems. The overall overview of Development Action Plan for Scheduled Tribes (DAPST/TSP) is to help improve tribal communities by supporting economic growth, sustainable farming, and self-reliance. It focuses on modern farming, women's empowerment, and environmental conservation to create a lasting impact.




**Data base of training programme conducted under DAPST/ TSP during 2024**

| Sr. No. | Name of training                                              | Input Delivered                                                                                                               | No. of participants | Total |        | Date of training | Duration of training (Days) | Venue                                                         | Name of Coordinator                     |
|---------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--------|------------------|-----------------------------|---------------------------------------------------------------|-----------------------------------------|
|         |                                                               |                                                                                                                               |                     | Male  | Female |                  |                             |                                                               |                                         |
| 1.      | Farmer's training cum Input distribution program.             | Distribution of Tarpaulin, Cotton Picking Bag (2 nos. each) & <i>Trichoderma viride</i> formulation to schedule tribe farmers | 11                  | -     | 11     | 01-01-2024       | 1 Day                       | Village-Muradpur Taluka-Umred, Dist.- Nagpur                  | Dr. D.T. Nagrale, Dr. Rakesh Kumar      |
| 2.      | Farmer's Training cum Vegetable Seed Kit Distribution Program | Distribution of Vegetable seed kit, Neem oil, <i>Trichoderma viride</i> formulation                                           | 28                  | 02    | 30     | 30-01-2024       | 1 Day                       | Village- Banera, Taluka-Parseoni, Dist.-Nagpur                | Dr. D.T. Nagrale                        |
| 3.      | Farmers Training Cum Vegetable Seed Kit Distribution Program  | Distribution of Vegetable seed kit and <i>Trichoderma</i> powder                                                              | 29                  | 21    | 50     | 06-02-2024       | 1 Day                       | KVK, Sonapur, Gadchiroli                                      | Dr. D.T. Nagrale                        |
| 4.      | Exposure Visit cum Groundnut Seed Distribution Program        | Distribution of Groundnut seeds bags (2 nos. each) and <i>Trichoderma</i> powder formulation                                  | 12                  | -     | 12     | 07-02-2024       | 1 Day                       | ICAR-CICR, Nagpur                                             | Dr. D.T. Nagrale                        |
| 5.      | Distribution of Vegetable Seed Kit and Organic Inputs Program | Distribution of Vegetable Seed Kit, Neem Oil, & Phosphate solubilising bacteria formulation                                   | 33                  | 2     | 35     | 08-02-2024       | 1 Day                       | Z. P. High School Ghoti (Ramjan), Taluka-Ramtek, Dist.-Nagpur | Dr. D.T. Nagrale,                       |
| 6.      | Exposure Visit cum Groundnut Seed Distribution Program        | Distribution of Groundnut seeds bags (2 nos. each) and <i>Trichoderma</i> powder formulation                                  | 05                  | -     | 05     | 12-02-2024       | 1 Day                       | ICAR-CICR, Nagpur                                             | Dr. D.T. Nagrale                        |
| 7.      | Exposure Visit cum Groundnut Seed Distribution Program        | Distribution of Groundnut seeds bags (2 nos. each) and <i>Trichoderma</i> Powder                                              | 03                  | -     | 03     | 16-02-2024       | 1 Day                       | ICAR-CICR, Nagpur                                             | Dr. D.T. Nagrale,                       |
| 8.      | Farmers Training Cum Input Distribution Programme             | Distribution of Vegetable seed kit, Phosphate solubilising bacteria, P.                                                       | 45                  | 05    | 50     | 22-02-2024       | 1 Day                       | Village- Nimboni, Taluka-Navapur, District-Nandurbar          | Dr. D. T. Nagrale, Dr. Ramakrishna G.I. |

| Sr. No. | Name of training                                                                     | Input Delivered                                                                                                                                       | No. of participants |        | Total | Date of training | Duration of training (Days) | Venue                                                            | Name of Coordinator                    |
|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------|------------------|-----------------------------|------------------------------------------------------------------|----------------------------------------|
|         |                                                                                      |                                                                                                                                                       | Male                | Female |       |                  |                             |                                                                  |                                        |
|         |                                                                                      | <i>flourascens</i><br><i>Trichoderma</i> powder formulation                                                                                           |                     |        |       |                  |                             |                                                                  |                                        |
| 9.      | Farmer's training, awareness camp cum summer moong seeds distribution program        | Distribution of Summer Moong and Phosphate solubilising bacteria formulation                                                                          | 71                  | 9      | 80    | 11-03-2024       | 1 Day                       | KVK, Sonapur, Gadchiroli                                         | Dr. D.T. Nagrale                       |
| 10.     | Exposure Visit cum Summer moong Seed Distribution Program                            | Distribution of Summer Moong Seeds                                                                                                                    | 17                  | 0      | 17    | 27-03-2024       | 1 Day                       | ICAR-CICR, Nagpur                                                | Dr. D.T. Nagrale,                      |
| 11.     | Awareness Camp cum Exposure Visit Program                                            | Exposure visit of farmers to ICAR-CICR, Nagpur                                                                                                        | 30                  | -      | 30    | 08-04-2024       | 1 Day                       | ICAR-CICR, Nagpur                                                | Dr. D.T. Nagrale                       |
| 12.     | Farmers Training, Awareness Camp cum Paddy Seeds Distribution program                | Distribution of paddy seeds varieties (PKV-Tilak) (PKV-Sadhana) and Vegetable seed Kit (50 nos.)                                                      | 85                  | 15     | 100   | 11-06-2024       | 1 Day                       | Krishi Vigyan Kendra (KVK) Hiwara, Gondia                        | Dr. D.T. Nagrale                       |
| 13.     | One day Farmer's Training, Awareness Camp cum Paddy Seeds Distribution program       | Distribution of paddy seeds variety (PKV-Tilak), (PKV-Kisan) and Vegetable seed kit (27 nos.)                                                         | 90                  | 10     | 100   | 13-06-2024       | 1 Day                       | Krishi Vigyan Kendra (KVK), Sonapur, Gadchiroli                  | Dr. D.T. Nagrale, Dr. Rakesh Kumar     |
| 14.     | Farmers Training cum Distribution of BG -II Hybrid seeds to schedule tribe's farmers | Distribution of Ankur Kirti, Nuziveedu Armita, and Rashi RCS 929 were distributed 6 packets to each HDPS cotton producing scheduled tribe (ST) farmer | 42                  | 09     | 51    | 15-06-2024       | 1 Day                       | Village- Marram, Taluka-Sausar, Dist.-Pandhurna (Madhya Pradesh) | Dr. D.T. Nagrale, Dr. Ramakrishna G.I. |
| 15.     | Farmers Training cum Distribution of Input Program                                   | Distribution of rechargeable torch, Special proofed tarpaulin, N: P: K (18:18:18) 5 packets to each farmer                                            | 89                  | 11     | 100   | 04-07-2024       | 1 Day                       | Village- Kumhbari, Taluka-Ghatanji, Dist.-Yavatmal               | Dr. D.T. Nagrale                       |

| Sr. No. | Name of training                                                     | Input Delivered                                                                                                                                                                                        | No. of participants |        | Total | Date of training | Duration of training (Days) | Venue                                                                | Name of Coordinator                                  |
|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------|------------------|-----------------------------|----------------------------------------------------------------------|------------------------------------------------------|
|         |                                                                      |                                                                                                                                                                                                        | Male                | Female |       |                  |                             |                                                                      |                                                      |
| 16.     | Farmers Training cum Distribution of Inputs Program                  | Distribution of Mepiquat Chloride 5% aqueous solution, N:P:K (13:00:45)                                                                                                                                | 42                  | 09     | 51    | 07-08-2024       | 1 Day                       | Village- Marram, Taluka-Sausar, Dist.-Pandhurna (Madhya Pradesh)     | Dr. D.T. Nagrale, Dr. Ramkrushna G.I.                |
| 17.     | Farmer Training cum Inputs Distribution Program                      | Distribution of Vermiculture vermicompost beds, plant protection chemicals like Dinotefuran 20% SG, Propiconazole 25% EC and Water soluble fertilizer (N:P:K 19:19:19)                                 | 38                  | 12     | 50    | 29-08-2024       | 1 Day                       | Village(s)-Sharad and Gandhinagar, Taluka-Kalamab, District-Yavatmal | Dr. D.T. Nagrale, Dr. U.V. Galkate                   |
| 18.     | Farmers Training cum Distribution of Inputs Program                  | Distribution of Pheromone Traps (2 nos.) with Pectinolure (4 nos.), Profenofos 50% EC, Propiconazole 25% EC                                                                                            | 89                  | 11     | 100   | 20-09-2024       | 1 Day                       | Village- Kumbhbari, Taluka-Ghatanji, Dist.-Yavatmal                  | Dr. D.T. Nagrale, Dr. S.H. Thube, Dr. Rakesh Kumar   |
| 19.     | Farmer's training, Field Day cum critical input distribution program | Distribution of N: P: K (19:19:19), <i>Pseudomonas Fluorascens</i> 500 g, Dinotefuran 20% SG, <i>Trichoderma viride</i> 1% WP                                                                          | 47                  | 03     | 50    | 01-10-2024       | 1 Day                       | Village-Jambhali, Taluka-Armori, District-Gadchiroli                 | Dr. D.T. Nagrale, Dr. U.V. Galkate, Dr. Rakesh Kumar |
| 20.     | Farmers training cum critical input distribution program             | Distribution of <i>Trichoderma viride</i> 1%, <i>Pseudomonas fluorascens</i> , Dinotefuran 20% SG, Pheromone trap (2 nos.) with Pectinolure (04 nos.) and Water-soluble fertilizer (N: P: K, 19:19:19) | 46                  | 04     | 50    | 11-10-2024       | 1 Day                       | Village- Chutugunta, Taluka-Mulchera, District-Gadchiroli            | Dr. D.T. Nagrale                                     |
| 21.     | Awareness Camp on Pest Management in Cotton" Program                 | Training programme on pest management in cotton                                                                                                                                                        | 10                  | -      | 10    | 15-10-2024       | 1 Day                       | Village- Salaimendra Taluka-Hingna,                                  | Dr. D.T. Nagrale                                     |

| Sr. No. | Name of training                                                     | Input Delivered                                                                                                                                          | No. of participants |        | Total | Date of training | Duration of training (Days) | Venue                                             | Name of Coordinator                                    |
|---------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------|------------------|-----------------------------|---------------------------------------------------|--------------------------------------------------------|
|         |                                                                      |                                                                                                                                                          | Male                | Female |       |                  |                             |                                                   |                                                        |
| 22.     | Awareness Camp cum Pest Management and Field Sanitation Program      | Distribution of Non-electric water purifier                                                                                                              | 17                  | -      | 17    | 16-10-2024       | 1 Day                       | ICAR-CICR, Nagpur                                 | Dr. D.T. Nagrale, Dr. Ramkrushna G.I. Dr. U.V. Galkate |
| 23.     | Farmer's Training, Field Day cum critical input Distribution program | Distribution of tarpaulins, spray protection kits, Distribution of Trichoderma viride, Neem-based extracts and water-soluble fertilizers (19:19:19, NPK) | 46                  | 14     | 60    | 18-12-2024       | 1 Day                       | Village-Mutnur Taluka-Chamorshi Dist.-Gadchiroli  | Dr. D.T. Nagrale, Dr. U.V. Galkate, Dr. S.H. Thube     |
| 24.     | Kisan Mela cum input Distribution program                            | Distribution of Tarpaulin, Lapa Pipe, N: P: K (19:19:19), Neem Oil, <i>Pseudomonas fluorescens</i>                                                       | 45                  | 05     | 50    | 20-12-2024       | 1 Day                       | ICAR-CICR, Nagpur                                 | Dr. D.T. Nagrale                                       |
| 25.     | One Day Farmer's training cum Input Distribution program             | Distribution Neem Oil, <i>Trichoderma viride</i> formulation                                                                                             | 10                  | -      | 10    | 27-12-2024       | 1 Day                       | Village-Parsoda, Taluka-Warora, Dist.- Chandrapur | Dr. D.T. Nagrale, Dr. S.H. Thube                       |



## Activity Photos under DAPST/TSP Scheme





#### 10.8.4: Library

In the year 2024, the Library procured 109 new books for scientists and students of the Academic Hub.

The Library also procured the E-book series of Advances in Agronomy 2024 thus adding to its existing e-book collection.

19 Hindi books were procured. The Library also subscribed to 7 Indian Journals. Annual Report 2023 was distributed to ICAR Institutes and dignitaries.

Certificate of Appreciation and a Memento was presented to the Library ICAR-CICR Nagpur for Highest number of hits on J-Gate Discovery platform among ICAR institutions for Western Regions for the year 2023 in the Regional Training Workshop organized jointly by Informatics India and Agricultural Education Division, ICAR at BSKVV Dapoli on 12/12/2024.

#### DOCUMENTATION SERVICES

- The Library has started a monthly documentation service to highlight the worldwide ongoing research and development in Cotton science by the name “Gleanings in Cotton Research”. 12 issues of this monthly publication were compiled for the year 2024 and e-mailed to all scientists.
- Library provides E-Reference Service by virtue of which, important information vital for research such as, alerts, bulletins, articles and circulars received by the Library in electronic format are immediately circulated to all scientists by sending regular E-mails.
- The Library also acts as a Repository for scholarly papers published by the scientists of the institute. Soft copies of the research papers are stored in the Library and are made available as and when required in multiple formats.
- Articles appearing in newspapers on Cotton are digitally scanned and the copy is emailed to all scientists for information. A collection of all news items appearing in 2023 was compiled and published by the name “CICR in News 2023”.
- The Library is actively participating in the E-Journal Consortium by responding regularly through E-mails

and thus also receiving updates. More than 2000 online journals on agriculture and crop science are made available over the network through this consortium.

- Eight User Terminals installed in the Library have facilitated the library users to access the databases uploaded in the Library Server. Users can also access the Internet on these terminals. Similarly the entire catalog of the library has been downloaded on these terminals for ease of use.
- Charging points for laptops and Wi-Fi router was installed in the Library for the students of the Academic hub.
- KOHA Library software was installed in the Library and the data comprising the entire Library collection that includes books, bound volumes, Annual Reports, Hindi books and Gratis publications was migrated on the new platform. The Library catalog is available on LAN terminals of the Institute.

#### 10.8.5: Progressive Use of Hindi

राजभाषा (हिंदी) : प्रचार—प्रसार

- राजभाषा कार्यान्वयन समिति की बैठकों की तिथि:

| क्र. | दिनांक          | विषय                                                   |
|------|-----------------|--------------------------------------------------------|
| १    | ०२ फरवरी, २०२४  | वर्ष—२०२४ की राजभाषा कार्यान्वयन समिति की प्रथम बैठक   |
| २    | १२ जून, २०२४    | वर्ष—२०२४ की राजभाषा कार्यान्वयन समिति की द्वितीय बैठक |
| ३    | २६ अगस्त, २०२४  | वर्ष—२०२४ की राजभाषा कार्यान्वयन समिति की तृतीय बैठक   |
| ४    | १३ दिसंबर, २०२४ | वर्ष—२०२४ की राजभाषा कार्यान्वयन समिति की चतुर्थ बैठक  |

- हिंदी सप्ताह २०२४

हिंदी सप्ताह : उद्घाटन एवं समापन समारोह का आयोजन : नागपुर, वर्धा रोड स्थित भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, नागपुर में बड़े ही उत्साह पूर्ण वातावरण में ‘हिंदी पखवाडा (दिनांक : १४ — ३० सितंबर, २०२४) समारोह’ का विधिवत् उद्घाटन दिनांक : १७ सितम्बर, २०२४ को डॉ. जी.टी.बेहरे, प्रभारी, निदेशक, भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान



संस्थान, नागपुर के शुभहस्ते दीप प्रज्ज्वलित कर किया गया।

इस कार्यक्रम का संचालन डॉ. रघना पाण्डे, वरिष्ठ वैज्ञानिक, डॉ. पूजा वर्मा, वैज्ञानिक एवं श्रीमती रघना देशमुख, तकनीकी अधिकारी, भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, नागपुर ने किया तथा आभार डॉ. पूजा वर्मा, वैज्ञानिक ने किया। इस सुअवसर पर उपस्थित अधिकारियों एवं कर्मचारियों का संस्थान की राजभाष कार्यान्वयन समिति की ओर से हार्दिक स्वागत करते हुए उन्हें हिंदी पखवाड़ा (दिनांक : १४ – ३० सितंबर, २०२४) समारोह' के अंतर्गत आयोजित किए जानेवाली विभिन्न हिंदी प्रतियोगिताओं (हिंदी गीत गायन, हिंदी निंवंध प्रतियोगिता, चित्र आधारित कहानी लेखन प्रतियोगिता, हिंदी शुद्ध लेखन प्रतियोगिता, एक मिनट की प्रस्तुति (वन मिनट शो), सामान्य ज्ञान/हिंदी बहुविकल्पी प्रश्नोत्तरी प्रतियोगिता, पर्यायवाची शब्द/अनुलोम : विलोम शब्द

प्रतियोगिता, शब्दानुवाद प्रतियोगिता, मूक अभिनय प्रतियोगिता एवं हिंदी काव्य पाठ प्रतियोगिता के विजेता प्रतिभागियों को ) की जानकारी अधिकारियों एवं कर्मचारियों को देते हुए उनसे यह आग्रह किया कि वे इन विभिन्न हिंदीप्रतियोगिताओं में अधिक—से—अधिक की संख्या में भाग लेकर इस आयोजनको सफलबनाएँ।

३० सितंबर, २०२४ को हिंदी पखवाड़ा का समापन किया गया। इस समारोह के कार्यक्रमाध्यक्ष डॉ. जी. टी. बेहरे, प्रभारी, निदेशक, भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, नागपुर एवं मंचासीन मान्यवरों के शुभहस्ते संस्थान में हिंदी पखवाड़ा समारोह –२०२४ के अंतर्गत आयोजित हिंदी संवंधित विभिन्न प्रतियोगिताओं के विजयी प्रतिस्पर्धी, अधिकारियों एवं कर्मचारियों को नकद पुरस्कार वितरित किए गए।





(संस्थान में आयोजित हिंदी प्रख्वाड़ा: समापन समारोह का परिदृश्य)

**कार्यशालाएं : २०२४**

केन्द्रीय कपास अनुसंधान संस्थान, नागपुर तथा क्षेत्रीय केन्द्र, कोयंबटुर के कार्यालय में वैज्ञानिक/प्रशासनिक/तकनीकी अधिकारी सर्वर्ग हेतु एक

दिवसीय कार्यशालाओं का आयोजन किया गया। संस्थान में इस वर्ष निम्नलिखित विषयों पर कार्यालयों का प्रस्तुतीकरण किया गया।

| क्र. | दिनांक         | विषय                                                                                | वक्ता                                                                                                       |
|------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| १    | २१ मार्च, २०२४ | कपास में गूलाबी सूंडी का प्रकोप तथा मित्र कीट ट्रायकोग्रामा द्वारा उसका नियंत्रण    | श्रीमती पूजा घोंगे, वरिष्ठ तकनिशियन एवं श्री सुजित कुमारे, तकनीकी सहायक, फसल संरक्षण विभाग                  |
| २    | १४ जून, २०२४   | जैवप्रोद्योगिकी द्वारा कपास के पादप रोग जनक की पहचान एवं उनका निदान                 | श्रीमती मिथिला मेश्राम, वरिष्ठ तकनीकी सहायक, फसल संरक्षण विभाग                                              |
| ३    | २३ अगस्त, २०२४ | आणविक जीव विज्ञान पर मूलभूत जानकारी एवं प्रयोगशाला में होने वाले कार्यों की जानकारी | डॉ. जॉय दास, वैज्ञानिक एवं श्री जयभिम कांबे, वरिष्ठ तकनिशियन, जैव प्राद्योगिकी प्रयोग शाला, फसल सुधार विभाग |
| ४    | १८ नवंबर २०२४  | कपास के बॉलवर्म समूह की पहचान एवं उनका निदान                                        | श्रीमती पूजा घोंगे, वरिष्ठ तकनिशियन फसल संरक्षण विभाग                                                       |

**भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, क्षेत्रीय केन्द्र, सिरसा, हरियाणा में वर्ष २०२४ के दौरान हिंदी अनुभाग द्वारा आयोजित गतिविधियाँ**

**१. हिंदी सप्ताह का आयोजन :**

भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, क्षेत्रीय केन्द्र, सिरसा, हरियाणा में दिनांक १४—२० सितंबर, २०२४ को ‘‘हिंदी सप्ताह’’ का आयोजन किया गया। इस दौरान विभिन्न गतिविधियाँ आयोजित किये गयीं। इनमें मुख्य रूप से सुलेख प्रतियोगिता, सुविचार प्रतियोगिता एवं वाद

विवाद प्रतियोगिता आदि शामिल हैं। ‘‘हिंदी सप्ताह—२०२४’’ के दौरान आयोजित किये गए कार्यकर्मों में भा.कृ.अनु.प.—केन्द्रीय कपास अनुसंधान संस्थान, क्षेत्रीय केन्द्र, सिरसा, हरियाणा के वैज्ञानिक, प्रशासनिक एवं तकनीकी कर्मचारी व अधिकारी, कुशल सहायक कर्मचारी, वाई पी १, २ एवं दैनिक वेतनभोगी शामिल हुए।

## २. हिंदी कार्यशालाओं का आयोजन :

भा.कृ.अनु.प.—केंद्रीय कपास अनुसंधान संस्थान, क्षेत्रीय केन्द्र, सिरसा, हरियाणा में वर्ष २०२४ में विभिन्न ‘हिंदी कार्यशालाओं’ का आयोजन २०-०९—२०२४ एवं ११—११—२०२४ को किया गया। इन ‘हिंदी

कार्यशालाओं’ के दौरान आयोजित किये गए कार्यकर्मों में भा.कृ.अनु.प.—केंद्रीय कपास अनुसंधान संस्थान, क्षेत्रीय केन्द्र, सिरसा, हरियाणा के वैज्ञानिक, प्रशासनिक एवं तकनीकी कर्मचारी व अधिकारी, कुशल सहायक कर्मचारी, वार्षीय पी १, २ एवं दैनिक वेतनभोगी शामिल हुए।



भा.कृ.अनु.प.—केंद्रीय कपास अनुसंधान संस्थान, क्षेत्रीय स्टेशन, सिरसा, हरियाणा में वर्ष २०२४ में आयोजित हिंदी कार्यशालाएं



भा.कृ.अनु.प.—केंद्रीय कपास अनुसंधान संस्थान, क्षेत्रीय स्टेशन, सिरसा, हरियाणा में वर्ष २०२४ में आयोजित हिंदी सप्ताह

## 10.9: Weather

### Nagpur

| Month           | Temperature (0C) |       | Relative Humidity (%) |       | Rainfall (mm) | No. of Rainy Days |
|-----------------|------------------|-------|-----------------------|-------|---------------|-------------------|
|                 | Max              | Min   | Max                   | Min   |               |                   |
| January, 2024   | 28.23            | 14.88 | 71.28                 | 47.21 | 8.8           | 2                 |
| February, 2024  | 31.90            | 17.75 | 69.73                 | 39.62 | 10.8          | 1                 |
| March, 2024     | 36.17            | 20.07 | 62.79                 | 31.91 | 28            | 3                 |
| April, 2024     | 38.45            | 23.75 | 67.79                 | 37.56 | 123           | 8                 |
| May, 2024       | 40.40            | 26.39 | 63.66                 | 36.50 | 54.1          | 2                 |
| June, 2024      | 38.25            | 27.27 | 69.81                 | 44.72 | 102.8         | 8                 |
| July, 2024      | 31.20            | 25.45 | 78.53                 | 65.88 | 677.6         | 21                |
| August, 2024    | 31.18            | 24.81 | 79.21                 | 68.60 | 317.2         | 14                |
| September, 2024 | 32.17            | 24.85 | 80.62                 | 68.08 | 289.6         | 11                |
| October, 2024   | 33.75            | 23.44 | 78.00                 | 57.40 | 16.2          | 2                 |
| November, 2024  | 30.49            | 16.05 | 72.64                 | 45.91 | 0             | 0                 |
| December, 2024  | 29.12            | 15.31 | 74.02                 | 48.61 | 0             | 0                 |
| <b>Total</b>    |                  |       |                       |       | <b>1628.1</b> | <b>72</b>         |

### Coimbatore

| Month          | Tmax (°C) | Tmin (°C) | Relative Humidity (%) |     | Rainfall | Rainy (mm) Days |
|----------------|-----------|-----------|-----------------------|-----|----------|-----------------|
|                |           |           | Max                   | Min |          |                 |
| January, 2024  | 29.2      | 21.5      | 85                    | 54  | 34.9     | 2               |
| February, 2024 | 32.9      | 22.0      | 81                    | 40  | 0.0      | 0               |
| March, 2024    | 35.6      | 23.6      | 73                    | 32  | 0.0      | 0               |
| April, 2024    | 37.8      | 25.7      | 75                    | 32  | 0.0      | 0               |



| Month           | Tmax (°C) | Tmin (°C) | Relative Humidity (%) |     | Rainfall | Rainy (mm) Days |
|-----------------|-----------|-----------|-----------------------|-----|----------|-----------------|
|                 |           |           | Max                   | Min |          |                 |
| May, 2024       | 34.4      | 24.6      | 84                    | 54  | 175.8    | 9               |
| June, 2024      | 32.1      | 24.3      | 82                    | 60  | 27.0     | 2               |
| July, 2024      | 30.6      | 23.6      | 84                    | 63  | 89.3     | 8               |
| August, 2024    | 31.8      | 23.9      | 87                    | 57  | 31.8     | 3               |
| September, 2024 | 32.9      | 23.7      | 84                    | 55  | 11.2     | 1               |
| October, 2024   | 30.8      | 22.7      | 92                    | 68  | 369.4    | 14              |
| November, 2024  | 29.8      | 22.0      | 91                    | 60  | 64.2     | 5               |
| December, 2024  | 29.6      | 21.0      | 92                    | 60  | 39.1     | 5               |
| Total           |           |           |                       |     | 842.7    | 49              |

### Sirsa

| Month           | Temperature (°C)                |                                 | Relative Humidity (%)   |                         | Monthly Rainfall (mm) | No. of Rainy Days |
|-----------------|---------------------------------|---------------------------------|-------------------------|-------------------------|-----------------------|-------------------|
|                 | Maximum Monthly Average (Range) | Minimum Monthly Average (Range) | Maximum Monthly Average | Minimum Monthly Average |                       |                   |
| January, 2024   | 13.6 (11.0 - 18.0)              | 2.7 (1.2 - 7.0)                 | 86.0                    | 80.0                    | 0.0                   | 0.0               |
| February, 2024  | 22.5 (18.0 - 28.4)              | 7.4 (2.8 - 9.5)                 | 81.0                    | 52.9                    | 8.0                   | 2.0               |
| March, 2024     | 28.2 (20.2 - 34.5)              | 11.7 (6.0 - 17.2)               | 71.6                    | 44.3                    | 0.0                   | 0.0               |
| April, 2024     | 37.2 (32.4 - 41.0)              | 18.9 (15.0 - 21.5)              | 52.4                    | 31.2                    | 0.0                   | 0.0               |
| May, 2024       | 43.9 (33.2 - 49.0)              | 26.1 (16.0 - 30.5)              | 45.3                    | 26.2                    | 0.0                   | 0.0               |
| June, 2024      | 43.7 (36.5 - 48.2)              | 28.7 (25.0 - 30.0)              | 55.8                    | 30.3                    | 59.7                  | 3.0               |
| July, 2024      | 37.2 (14.0 - 41.0)              | 28.1 (25.2 - 30.0)              | 73.4                    | 51.8                    | 114.0                 | 6.0               |
| August, 2024    | 35.2 (29.2 - 37.5)              | 26.7 (25.5 - 28.0)              | 76.1                    | 63.2                    | 78.0                  | 7.0               |
| September, 2024 | 35.2 (33.0 - 38.8)              | 24.7 (22.2 - 26.5)              | 77.0                    | 61.9                    | 0.0                   | 0.0               |
| October, 2024   | 35.4 (32.8 - 38.0)              | 19.2 (16.0 - 23.0)              | 68.8                    | 37.3                    | 0.0                   | 0.0               |
| November, 2024  | 29.1 (24.4 - 34.5)              | 13.2 (10.0 - 18.0)              | 80.4                    | 40.8                    | 0.0                   | 0.0               |
| December, 2024  | 20.2 (13.5 - 26.6)              | 5.0 (2.0 - 10.8)                | 81.4                    | 52.0                    | 23.9                  | 3.0               |
| Total           |                                 |                                 |                         |                         | 283.6                 | 21                |

### 10.10: Cotton Scenario

Area in Lakh hectares  
Production in lakh bales of 170 kgs each  
Yield in lint Kilogram / Hectare

| Name of the state    | Area        |             | Production  |             | Yield       |             |
|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                      | 2023-24 (P) | 2024-25 (P) | 2023-24 (P) | 2024-25 (P) | 2023-24 (P) | 2024-25 (P) |
| Punjab               | 2.14        | 1.00        | 6.29        | 2.72        | 499.67      | 462.40      |
| Haryana              | 5.78        | 5.78        | 15.09       | 12.44       | 443.82      | 365.88      |
| Rajasthan            | 10.04       | 6.27        | 26.22       | 18.45       | 443.96      | 500.24      |
| <b>NORTHERN ZONE</b> | 17.96       | 13.05       | 47.60       | 33.61       | 450.56      | 437.83      |
| Gujarat              | 26.83       | 23.92       | 90.57       | 71.34       | 573.87      | 507.02      |



| Name of the state    | Area          |               | Production    |               | Yield         |               |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                      | 2023-24 (P)   | 2024-25 (P)   | 2023-24 (P)   | 2024-25 (P)   | 2023-24 (P)   | 2024-25(P)    |
| Maharashtra          | 42.34         | 40.86         | 80.45         | 89.09         | 323.02        | 370.66        |
| Madhya Pradesh       | 6.30          | 5.37          | 18.01         | 15.35         | 485.98        | 485.94        |
| <b>CENTRAL ZONE</b>  | <b>75.47</b>  | <b>70.15</b>  | <b>189.03</b> | <b>175.78</b> | <b>425.80</b> | <b>425.98</b> |
| Telangana            | 18.18         | 18.11         | 50.80         | 49.86         | 475.03        | 468.04        |
| Andhra Pradesh       | 4.22          | 4.05          | 7.37          | 8.77          | 296.90        | 368.12        |
| Karnataka            | 7.43          | 6.70          | 20.59         | 19.15         | 471.10        | 485.90        |
| Tamilnadu            | 1.30          | 0.63          | 2.52          | 1.30          | 329.54        | 350.79        |
| <b>SOUTHERN ZONE</b> | <b>31.13</b>  | <b>29.49</b>  | <b>81.28</b>  | <b>79.08</b>  | <b>443.87</b> | <b>455.87</b> |
| Orissa               | 2.16          | 1.47          | 7.05          | 5.17          | 554.86        | 597.89        |
| Others               | 0.16          | 0.31          | 0.26          | 0.61          | 276.25        | 334.52        |
| <b>TOTAL</b>         | <b>126.88</b> | <b>114.47</b> | <b>325.22</b> | <b>294.25</b> | <b>435.75</b> | <b>436.99</b> |

P – Provisional

\* - As estimated by Committee on Cotton Production and Consumption (COCPC) in its meeting held on 24.03.2025





## भा.कृ.अनु.प. - केन्द्रीय कपास अनुसंधान संरथान, नागपुर

### ICAR- CENTRAL INSTITUTE FOR COTTON RESEARCH, NAGPUR

Post Bag No.2, Shankar Nagar Post Office, Nagpur - 440010, Maharashtra, India

Website: [www.cicr.org.in](http://www.cicr.org.in)

An ISO 9001:2015 Certified Organisation

